Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    Solution of the equation $$\dfrac {dy}{dx} = \dfrac {y\dfrac {d(\phi (x))}{dx} - y^{2}}{\phi (x)}$$ is

  • Question 2
    1 / -0

    The solution of the differential equation $$\dfrac{dy}{dx}=\dfrac{y}{x}+\dfrac{\theta (y/x)}{\theta ' (y/x)}$$ is 

  • Question 3
    1 / -0

    The solution of the differential equation
    $$\left( 2x\cos { y } +3{ x }^{ 2 }y \right) dx+\left( { x }^{ 3 }-{ x }^{ 2 }\sin { y } -y \right) dy=0$$, is given by

  • Question 4
    1 / -0

    The solution of differential equation $$x\cos^{2}y dx = y\cos^{2} x  dy$$ is

  • Question 5
    1 / -0

    The solution of the differential equation
    $$x=1+xy\cfrac { dy }{ dx } +\cfrac { { \left( xy \right)  }^{ 2 } }{ 2! } { \left( \cfrac { dy }{ dx }  \right)  }^{ 2 }+\cfrac { { \left( xy \right)  }^{ 3 } }{ 3! } { \left( \cfrac { dy }{ dx }  \right)  }^{ 3 }+...\quad \quad $$
    is

  • Question 6
    1 / -0

    Let f(x) be differentiable on the interval $$(0,\infty)$$ such that $$f(1)=1$$ and $$\displaystyle \lim_{t \rightarrow x }\dfrac{t^2f(x)-x^2f(t)}{t-x}=1$$ for each $$x>0$$. Then f(x) is 

  • Question 7
    1 / -0

    The solution of the differential equation, $$x^2\dfrac{dy}{dx}.cos\dfrac{1}{x}=-1$$, where $$y\rightarrow -1$$ as $$x\rightarrow \infty$$ is 

  • Question 8
    1 / -0

    Solution of the differential equation 
    $$\frac{dy}{dx}$$ = $$\frac{3 x^2 y^4 + 2 xy}{x^2 - 2 x^3 y^3}$$ is

  • Question 9
    1 / -0

    If x and y are independent variables and $$f(x)=(\int^x_0e^{x-y}f'(y)dy)-(x^2-x+1)e^x$$ where f(x) is a differentiable function, then $$f(\dfrac{-1}{2})$$ equals.

  • Question 10
    1 / -0

    The solution of the differential equation $$\dfrac {x}{x^{2} + y^{2}} dy = \left (\dfrac {y}{x^{2} + y^{2}} + 1\right )dx$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now