Self Studies

Differential Equations Test - 54

Result Self Studies

Differential Equations Test - 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve: $$\dfrac{{dy}}{{dx}} = 1 + x + y + xy$$
    Solution
    $$\dfrac{dy}{dx}=1+x+y+xy$$

    $$\dfrac{dy}{dx}=y(x+1)+(x+1)$$

    $$\dfrac{dy}{dx}=(x+1)(y+1)$$

    $$\dfrac{dy}{y+1}=(x+1)dx$$

    Now, integrating both sides,

    $$\int\dfrac{dy}{y+1}=\int(x+1)dx$$
    $$\Rightarrow$$  $$ln(y+1)=\dfrac{x^2}{2}+x+c$$

    Now, taking exponential both sides,

    $$\Rightarrow$$  $$y+1=e^{\dfrac{x^2}{2}+x+c}$$
    $$\therefore$$  $$y=e^{\dfrac{x^2}{2}+x+c}-1$$

  • Question 2
    1 / -0
    The function f(x) satisfying the equation, $$f^2(x)+4f(x)\cdot f(x)+[f(x)]^2=0$$.where CCis an arbitrary constant.
    Solution

  • Question 3
    1 / -0
    $$\frac{{dy}}{{dx}} + \frac{{{y^2} + y + 1}}{{{x^2} + x + 1}} = 0$$
    Solution
    $$\dfrac{dy}{dx}=-\dfrac{{y}^{2}+y+1}{{x}^{2}+x+1}$$

    $$\Rightarrow\,\dfrac{dy}{{y}^{2}+y+1}=-\dfrac{dx}{{x}^{2}+x+1}$$

    On integrating, we get
    $$\displaystyle\int{\dfrac{dy}{{y}^{2}+y+1}}=-\displaystyle\int{\dfrac{dx}{{x}^{2}+x+1}}$$

    $$\displaystyle\int{\dfrac{dy}{{y}^{2}+2\times\dfrac{1}{2}y+\dfrac{1}{4}-\dfrac{1}{4}+1}}=-\displaystyle\int{\dfrac{dx}{{x}^{2}+2\times\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1}}$$

    $$\displaystyle\int{\dfrac{dy}{{\left(y+\dfrac{1}{2}\right)}^{2}+\dfrac{3}{4}}}=-\displaystyle\int{\dfrac{dx}{{\left(x+\dfrac{1}{2}\right)}^{2}+\dfrac{3}{4}}}$$

    $$\displaystyle\int{\dfrac{dy}{{\left(y+\dfrac{1}{2}\right)}^{2}+{\left(\dfrac{\sqrt{3}}{2}\right)}^{2}}}=-\displaystyle\int{\dfrac{dx}{{\left(x+\dfrac{1}{2}\right)}^{2}+{\left(\dfrac{\sqrt{3}}{2}\right)}^{2}}}$$

    $$\dfrac{2}{\sqrt{3}}{\tan}^{-1}{\left(\dfrac{y+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right)}=-\dfrac{2}{\sqrt{3}}{\tan}^{-1}{\left(\dfrac{x+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right)}+k$$

    or $$\dfrac{2}{\sqrt{3}}{\tan}^{-1}{\left(\dfrac{y+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right)}+\dfrac{2}{\sqrt{3}}{\tan}^{-1}{\left(\dfrac{x+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right)}=k$$

    or $${\tan}^{-1}{\left(\dfrac{y+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right)}+{\tan}^{-1}{\left(\dfrac{x+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right)}=\dfrac{\sqrt{3}}{2}k$$

    or $${\tan}^{-1}{\left(\dfrac{y+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right)}+{\tan}^{-1}{\left(\dfrac{x+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right)}=c$$ where $$c=\dfrac{\sqrt{3}}{2}k$$

    or $${\tan}^{-1}{\left(\dfrac{2y+1}{\sqrt{3}}\right)}+{\tan}^{-1}{\left(\dfrac{2x+1}{\sqrt{3}}\right)}=c$$ where $$c=\dfrac{\sqrt{3}}{2}k$$

  • Question 4
    1 / -0
    If $$y={e}^{4x}+2{e}^{-x}$$ satisfies the relation $$\dfrac {{d}^{3}y}{{dx}^{3}}+A\dfrac {dy}{dx}+By=0$$,then value of $$A$$ and $$B$$ respectively are 
  • Question 5
    1 / -0
    The solution of the differential equation $$(1+y^{2})+(x-e^{\tan -1}y)\dfrac {dy}{dx}=0$$, is-
  • Question 6
    1 / -0
    The solution of $$\dfrac {dy}{dx}+\dfrac {y}{x}=x^{2}y^{6}$$ is
  • Question 7
    1 / -0
    The solution of the differential equation $$x^2\dfrac{dy}{dx}\cos\left(\dfrac{1}{x}\right) - y \sin\left(\dfrac{1}{x}\right) = -1 ; where \  y \rightarrow -1 \ as \ x \rightarrow \infty$$ is 
    Solution
    $$\displaystyle x^{2}\frac{dy}{dx}cos\left ( \frac{1}{x} \right )- ysin\left ( \frac{1}{x} \right )=-1$$
    $$\displaystyle \frac{dy}{dx}-\frac{y}{x^{2}}tan\left ( \frac{1}{x} \right )= -\frac{1}{x^{2}}cos \left ( \frac{1}{x} \right )$$
    $$\displaystyle \frac{dy}{dx}+\left ( \dfrac{-1}{x^{2}}tan\left ( \dfrac{1}{x} \right ) \right )y=\frac{-1}{x^{2}cos\left ( \dfrac{1}{x} \right )}$$
    $$I.F =  e^{\displaystyle\int -\frac{1}{x^{2}}tan\left ( \dfrac{1}{x} \right )dx}$$
    $$\displaystyle \frac{1}{x}=t$$
    $$\displaystyle -\frac{dx}{x^{2}}=dt$$
    $$ =e^{\displaystyle\int tan(t)dt}$$
    $$\displaystyle =e^{ln(sect)}$$
    $$\displaystyle =sec\left ( \dfrac{1}{x} \right )$$
    $$\displaystyle sec\left ( \frac{1}{x} \right ).y=\int \frac{1}{x^{2}cos\left ( \dfrac{1}{x} \right )}.sec\left ( \frac{1}{x} \right )$$
    $$\displaystyle =-\int \frac{sec^{2}\left ( \dfrac{1}{x} \right )}{x^{2}}$$
    Let $$\displaystyle \frac{1}{x}=t$$
    $$\displaystyle \frac{-dx}{x^{2}}=dt$$
    $$\displaystyle =\int sec^{2}(t)dt$$
    $$\displaystyle \boxed{sec\left ( \frac{1}{x} \right ).y=tan\left ( \frac{1}{x} \right )+C}$$
    $$\displaystyle 1.-1= 0+C$$   $$C=-1$$
    $$\displaystyle sec\left ( \frac{1}{x} \right ).y= tan\left ( \frac{1}{x} \right )-1, $$
    $$\displaystyle \boxed{y=sin\left ( \frac{1}{x} \right )-cos\left ( \frac{1}{x} \right )}$$
  • Question 8
    1 / -0
    The general solution of differential equation $$\dfrac{dy}{dx}=\sin^{3}{x}\cos^{2}{x}+xe^{x}$$
    Solution

  • Question 9
    1 / -0
    The value of $$\displaystyle \lim_{x \rightarrow \infty}$$ y(x) obtained from the differential equation $$\dfrac{dy}{dx} = y - y^2$$, where y(0) = 2 is 
    Solution
    $$\dfrac{dy}{dx}=y-y^{2}$$                                            $$y(0)=2$$
    $$\dfrac{dy}{y-y^{2}}=dx$$
    $$\dfrac{-dy}{y^{2}-y}=dx$$
    $$\dfrac{-dy}{y^{2}\left(\dfrac{1}{2}\right)^{2}-2\times \dfrac{1}{2}y-\dfrac{1}{4}}=dx$$
    $$\dfrac{dy}{\left(y-\dfrac{1}{2}\right)^{2}-\left(\dfrac{1}{2}\right)^{2}}=-dx$$
    $$\dfrac{1}{2\times \dfrac{1}{2}}\ln\left|\dfrac{y-\dfrac{1}{2}-\dfrac{1}{2}}{y-\dfrac{1}{2}+\dfrac{1}{2}}\right|=-x+c$$
    $$\ln\left(\dfrac{y-1}{y}\right)=x+c$$
    Given $$y(0)=2$$
    $$\ln\left(\dfrac{2-1}{2}\right)=C$$
    $$\boxed{C=\ln\left(\dfrac{1}{2}\right)}$$
    $$\ln\left(\dfrac{y-1}{y}\right)=-x+\ln\left(\dfrac{1}{2}\right)$$
    $$\ln\left(\dfrac{y}{y-1}\right)=x+\ln(2)$$
    $$\dfrac{y}{y-1}=e^{x+\ln (2)}$$
    $$\dfrac{y-1}{y}=\dfrac{1}{e^{x+\ln(2)}}$$
    $$1-\dfrac{1}{y}=e^{-(x+\ln(2))}$$
    $$\dfrac{1}{y}=1-e^{-(x+\ln (2)]}$$
    $$y=\dfrac{1}{1-e^{-[x+\ln (2)]}}$$
    $$\displaystyle\lim_{x\rightarrow \infty}\dfrac{1}{1-e^{-\infty}}=\dfrac{1}{1-0}=1$$
  • Question 10
    1 / -0
    Solution of $$\left(\dfrac{x+y-a}{x+y-b}\right)\left(\dfrac{dy}{dx}\right)=\left(\dfrac{x+y+a}{x+y+b}\right)$$.
    Solution
    $$\left( \cfrac { x+y-a }{ x+y-b }  \right) \left( \cfrac { dy }{ dx }  \right) =\left( \cfrac { x+y+a }{ x+y+b }  \right) $$
    Let $$x+y=z$$
    $$\Rightarrow 1+\cfrac { dy }{ dx } =\cfrac { dz }{ dx } \Rightarrow \cfrac { dy }{ dx } =\cfrac { dz }{ dx } -1\quad $$
    substituting
    $$\Rightarrow \left( \cfrac { z-a }{ z-b }  \right) \left( \cfrac { dz }{ dx } -1 \right) =\left( \cfrac { z+a }{ z+b }  \right) $$
    $$\Rightarrow \cfrac { dz }{ dx } =1+\cfrac { \left( z+a \right) \left( z-b \right)  }{ \left( z-a \right) \left( z+b \right)  } =\cfrac { { z }^{ 2 }+bz-az+{ z }^{ 2 }-bz+az-ab }{ \left( z-a \right) \left( z+b \right)  } =\cfrac { 2\left( { z }^{ 2 }-ab \right)  }{ \left( z-a \right) \left( z+b \right)  } $$
    $$\Rightarrow \int { \cfrac { \left( { z }^{ 2 }-ab \right) +z\left( b-a \right)  }{ { z }^{ 2 }-ab }  } dz=\int { 2 } dx=2x+C$$
    $$\Rightarrow \int { \left\{ 1+\cfrac { z\left( b-a \right)  }{ { z }^{ 2 }-ab }  \right\}  } dz=2x+C\quad $$
    $$\Rightarrow z+\cfrac { b-a }{ 2 } \ln { \left( { z }^{ 2 }-ab \right)  } =2x+C$$
    $$\Rightarrow \cfrac { b-a }{ 2 } \ln { \left( { z }^{ 2 }-ab \right)  } =2x+C-(x+y)=x-y+C$$
    $$\Rightarrow \log { \left[ { \left( x+y \right)  }^{ 2 }-ab \right]  } =\cfrac { 2 }{ b-a } \left( x-y \right) +C$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now