$$\displaystyle x^{2}\frac{dy}{dx}cos\left ( \frac{1}{x} \right )- ysin\left ( \frac{1}{x} \right )=-1$$
$$\displaystyle \frac{dy}{dx}-\frac{y}{x^{2}}tan\left ( \frac{1}{x} \right )= -\frac{1}{x^{2}}cos \left ( \frac{1}{x} \right )$$
$$\displaystyle \frac{dy}{dx}+\left ( \dfrac{-1}{x^{2}}tan\left ( \dfrac{1}{x} \right ) \right )y=\frac{-1}{x^{2}cos\left ( \dfrac{1}{x} \right )}$$
$$I.F = e^{\displaystyle\int -\frac{1}{x^{2}}tan\left ( \dfrac{1}{x} \right )dx}$$
$$\displaystyle \frac{1}{x}=t$$
$$\displaystyle -\frac{dx}{x^{2}}=dt$$
$$ =e^{\displaystyle\int tan(t)dt}$$
$$\displaystyle =e^{ln(sect)}$$
$$\displaystyle =sec\left ( \dfrac{1}{x} \right )$$
$$\displaystyle sec\left ( \frac{1}{x} \right ).y=\int \frac{1}{x^{2}cos\left ( \dfrac{1}{x} \right )}.sec\left ( \frac{1}{x} \right )$$
$$\displaystyle =-\int \frac{sec^{2}\left ( \dfrac{1}{x} \right )}{x^{2}}$$
Let $$\displaystyle \frac{1}{x}=t$$
$$\displaystyle \frac{-dx}{x^{2}}=dt$$
$$\displaystyle =\int sec^{2}(t)dt$$
$$\displaystyle \boxed{sec\left ( \frac{1}{x} \right ).y=tan\left ( \frac{1}{x} \right )+C}$$
$$\displaystyle 1.-1= 0+C$$ $$C=-1$$
$$\displaystyle sec\left ( \frac{1}{x} \right ).y= tan\left ( \frac{1}{x} \right )-1, $$
$$\displaystyle \boxed{y=sin\left ( \frac{1}{x} \right )-cos\left ( \frac{1}{x} \right )}$$