Self Studies

Triangles Test - 34

Result Self Studies

Triangles Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    It is given that $$AB=BC$$ and $$AD=EC.$$ The $$\triangle ABE\cong \triangle  CBD$$ by __________ congruency.

    Solution
    Given, $$AD=EC$$
    $$\Rightarrow $$ $$AD+DE=DE+EC$$
    $$\Rightarrow $$ $$AE=DC$$
    Also, $$AB=BC$$
    $$\Rightarrow $$ $$\angle BCA=\angle BAC$$          (isos. $$\triangle $$ property)
    $$\Rightarrow $$ $$\angle BCD=\angle BAE$$
    $$\therefore $$ In $$\triangle $$s $$ABE$$ and $$CBD,$$
    $$AB=CB$$          (Given)
    $$AE=DC$$          (proved above)
    $$\angle BAE=\angle BCD$$ (Proved above)
    $$\therefore $$ $$\triangle ABE\cong \triangle CBD$$          (SAS)
  • Question 2
    1 / -0
    In the figure, $$\displaystyle \Delta ABC\cong \Delta ADC$$ by the congruence postulate

    Solution
    According to Right angle hypotenuse side rule, two right-angled triangles are congruent if the hypotenuses and one pair of corresponding sides are equal.

    Hence, the given two triangles are congruent by the RHS rule.
  • Question 3
    1 / -0
    In the figure, $$\displaystyle AD\parallel BC$$ and $$\displaystyle AD=BC$$. Then $$\displaystyle \Delta ABD\cong \Delta CDB$$ by congruence postulate.

    Solution
    In $$\displaystyle \Delta ABD$$ and $$\displaystyle \Delta CDB$$
    $$\displaystyle AD=BC$$
    $$\displaystyle \angle BDA=\angle DBC$$ (Alternate angles)
    $$\displaystyle BD=BD$$
    $$\displaystyle \therefore \quad \Delta ABD\cong \Delta CDB$$ (By SAS postulate)
  • Question 4
    1 / -0
    In the above figure, $$\angle{B}=\angle{C}=65^\circ$$ and $$\angle{D}=30^\circ$$. Then

    Solution
    Here $$\angle{B}=\angle{C}=65^\circ$$ and $$\angle{D}=30^\circ$$
    $$\therefore$$ From the triangle ABD $$\angle{A}=85^\circ$$
    In triangle ABC $$\angle{A}=50^\circ$$
    $$\because BC<CA$$
    In triangle ACD $$\angle{A}=85^\circ-50^\circ=35^\circ$$
    $$\therefore CD>CA$$
  • Question 5
    1 / -0
    If $$\overline{AC}$$ and $$\overline{BD}$$ intersect at $$O$$ such that $$AO = CO$$ and $$BO = DO$$, then:

    Solution
    In $$\triangle AOB$$  and $$\triangle DOC$$,
    side $$OA =$$ side $$OC$$          ... given
    side $$OB =$$ side $$OD$$          ... given
    $$\angle AOB \cong \angle COD$$        ...Vertically opposite angles
    $$\therefore \triangle AOB \cong \triangle COD$$   ...SAS test of congruence.
    $$\therefore$$ side $$AB$$ $$\cong$$ side $$CD$$         ...c.s.c.t 
    $$\therefore \angle BAO \cong \angle DCO$$         ....c.a.c.t
    i.e. $$\angle BAC \cong \angle DCA$$      ....$$A-O-C$$ and $$B-O-D$$
    $$\therefore AB \parallel CD$$       ....by converse of alternate angles test
    So, option B is correct.
  • Question 6
    1 / -0
    In the figure, $$\displaystyle PS=QR$$ and $$PQ=SR$$, then choose the correct option.

    Solution
    In $$\displaystyle \Delta PQR$$ and $$\displaystyle \Delta PSR$$
    $$\displaystyle PS=QR,PQ=SR,PR=PR$$
    $$\displaystyle \therefore \quad \Delta RQP\cong \Delta RSP$$ (By SSS postulate)
  • Question 7
    1 / -0
    In $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DBC,AC=BD$$ and $$\displaystyle \angle ABC=\angle BCD={ 90 }^{ o }$$. Then $$\displaystyle \Delta ABC\cong \Delta DCB$$ by the postulate

    Solution
    In $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta DBC$$,
    $$\displaystyle \angle ABC=\angle BCD$$
    $$\displaystyle AC=BD$$ (Givenn)
    $$\displaystyle BC=BC$$ (Common Side)
    $$\displaystyle \Delta ABC\cong \Delta DCB$$ WCB (By RHS postulate) 
  • Question 8
    1 / -0
    In  $$ \displaystyle \bigtriangleup ABC,AD\perp BC,\angle B=\angle C $$ and AB = AC State by which property $$ \displaystyle \Delta ADB\cong \Delta ADC$$ ?
    Solution

  • Question 9
    1 / -0
    The two quadrilaterals are congruent.
    Which angle in quadrilateral WXYZ corresponds to $$\displaystyle \angle BCD$$ in quadrilateral ABCD?

    Solution
    Clearly, $$\angle WXY$$ corresponds to $$\angle BCD$$ because $$BC$$ faces the angles marked with one arc and three arc and $$XY$$ also faces the angles marked with one arc and three arcs.
    So, $$\text{D}$$ is the correct option.
  • Question 10
    1 / -0
    In $$\displaystyle \Delta ABC,\angle A={ 12 }^{ o }$$ and $$\angle C={ 97 }^{ o }$$. Arranging the sides (according to lengths) in ascending order, we get:
    Solution
    In $$\displaystyle \Delta ABC,\angle A={ 12 }^{ o }$$ and $$\angle C={ 97 }^{ o }$$
    $$\displaystyle \therefore \quad \angle B={ 71 }^{ o }\quad \left( \because \angle A+\angle B+\angle C={ 180 }^{ o } \right) $$
    Now arranging the angles in ascending order $$\displaystyle \angle A<\angle B <\angle C$$.
    Sides opposite to greater angle are greater in length and the angles and the opposite sides of a triangle have same relation.
    Thus, arranging the sides in ascending order, we get $$BC< AC <AB.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now