Self Studies
Selfstudy
Selfstudy

Mathematics Test - 2

Result Self Studies

Mathematics Test - 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    If A and B are two n x n non singular matrix, then _____________
    Solution

    Calculation:

    A and B is non - singular matrices of order n x n 

    |A| ≠  0 and |B| ≠  0     ....(i)

    A and B are of the same order, so AB is defined and is on the same order. 

    Thus,

    |AB| = |A||B|

    |AB| ≠  0             [Using equ (i)]

    Thus AB is non-singular.

  • Question 2
    5 / -1
    Which of the following is not true for the determinant of a square matrix A of order 3?
    Solution

    CONCEPT:

    In general the determinant of a square matrix can be evaluated along any row (column) and it is equal to sum of the product of elements in any row and there corresponding co-factor.

    i.e \(\left| A \right| = \;\mathop \sum \limits_{j = 1}^n {a_{ij}}\;{C_{ij}},\;for\;some\;i \in N\),

    where Cij is the co-factor.

    CALCULATION:

    Here, it is given that matrix A is of order 3

    As we know that,  the determinant of a square matrix can be evaluated along any row (column) and it is equal to sum of the product of elements in any row and there corresponding co-factor i.e \(\left| A \right| = \;\mathop \sum \limits_{j = 1}^n {a_{ij}}\;{C_{ij}},\;for\;some\;i \in N\),

    where Cij is the co-factor.

    As we can see that, in each option except the option A all the elements of a row(column) are multiplied with its corresponding co-factor.

    Hence, option A is the correct answer.

  • Question 3
    5 / -1
    A is a scalar matrix with scalar k ≠ 0 of order 3. Then A-1 is
    Solution

    Since A is a scalar matrix, we have \(A = \left( {\begin{array}{*{20}{c}} k&0&0\\ 0&k&0\\ 0&0&k \end{array}} \right)\)

    \(\therefore \left| A \right| = {k^3}\)

    \(\begin{array}{l} adj\;A = \left( {\begin{array}{*{20}{c}} {{k^2}}&0&0\\ 0&{{k^2}}&0\\ 0&0&{{k^2}} \end{array}} \right)\\ {A^{ - 1}} = \frac{1}{{\left| A \right|}}\left( {adj\;A} \right) = \frac{1}{{{k^3}}}\left( {\begin{array}{*{20}{c}} {{k^2}}&0&0\\ 0&{{k^2}}&0\\ 0&0&{{k^2}} \end{array}} \right)\\ \frac{1}{k}\left( {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right) = \frac{1}{k}{\rm{I}} \end{array}\)

  • Question 4
    5 / -1
    If \(\left| {\;\begin{array}{*{20}{c}} a&b&0\\ 0&a&b\\ b&0&a \end{array}} \right| = 0\) , then which one of the following is correct?
    Solution

    Concept:

    Solving a \(3\times 3\) determinant:

    \(3\times 3\) determinant can be solved as follows:

    \(\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix} = a(ei-fh)-b(di-fg)+c(dh-ge)\)

     

    Calculation:

    Simplify the given determinant as follows:

    \(\begin{align*} \begin{vmatrix} a & b & 0\\ 0 & a & b\\ b & 0 & a \end{vmatrix} &= 0\\ a(a^2-0) - b(0-b^2) +0(0-ab) &= 0\\ a^3+b^3 &= 0\\ a^3 &= -b^3\\ \dfrac{a^3}{b^3} &= -1 \end{align*}\)

    Therefore, the given condition holds only if \(\dfrac{a}{b}\) is one of the cube roots of -1.

  • Question 5
    5 / -1

    What is the value of the following determinant?

    \(\begin{vmatrix} \cos \rm C & \tan \rm A & 0\\ \sin \rm B & 0 & -\tan \rm A\\ 0 & \sin \rm B & \cos \rm C \end{vmatrix}\)

    Solution

    Formula used:

    \(\rm A = \begin{vmatrix} a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3}\\ c_{1} & c_{2} & c_{3}\ \end{vmatrix}\)

    det(A) = \(\rm a_{1}\begin{vmatrix} b_{2} & b_{3}\\ c_{2} & c_{3} \end{vmatrix} - a_{2} \begin{vmatrix} b_{1} & b_{3}\\ c_{1} & c_{3} \end{vmatrix} + a_{3} \begin{vmatrix} b_{1} & b_{2}\\ c_{1} & c_{2} \end{vmatrix}\)

    = a1(b2 c3 - b3 c2) - a2(b1c3 - b3c1) + a3 (b1c2 - b2c1)

    Calculation:

    \(\begin{vmatrix} cos C & tan A & 0\\ sin B & 0 & -tanA\\ 0 & sinB & cos C \end{vmatrix}\)

    = cos C (0 + tan A sin B) - tan A (sin B cos C) 

    = tan A sin B cos C - tan A sin B cos C

    = 0

  • Question 6
    5 / -1
    Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det  A = 3 and det B = 4. Then the det (2AB) is
    Solution

    Concepts:

    If A and B are square matrices of order n, then

    |K × AB|= Kn x {| A| × | B |}

    Where

     K is any real number and a scalar.

    n is the order of matrix A or B as both have the same order

    Calculation:

    Given:  A and B be (3 x 3) matrices with |A| = 4 and | B | = 3

    As A and B be (3 x 3) matrices then n = 3

     By using above formula, we get

       | 2AB| = 2³ x 3 × 4 = 8 × 3 × 4 = 96.

    | 2AB| = 96 Additional Information

    The important properties of the determinant of a matrix are given below:

    1.      | A | = | A’ | for any square matrix A, where A is the transpose matrix of A.

    2.    If in any square matrix (say A)  of order ‘N’, either two rows or two columns are identical, then | A | = 0.

    3.    If |λA| = λ× | A |, when  A is the square matrix of Order ‘N’ and λ is any scalar.

    4.    If A and B are two square matrices of the same order, then |AB |= | A |× | B |.

  • Question 7
    5 / -1
    If \(A = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right)\) then (AAT)-1 = ?
    Solution

    Explanation:

    Given matrix \(A = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right)\)

    Now its transpose will be 

    \(A^T = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&{-2}\\ 2&{1}&{2}\\ 2&{-2}&{-1} \end{array}} \right)\)

    The product will be 

    AAT = \(\frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right) \cdot \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&{-2}\\ 2&{1}&{2}\\ 2&{-2}&{-1} \end{array}} \right)\)

    Here, AAT\(\frac {1}{9} \left( {\begin{array}{*{20}{c}} 9&{0}&{0}\\ 0&{9}&{0}\\ 0&{0}&{9} \end{array}} \right)\)

    ⇒ AAT = I;

    ∴ (AAT)-1 = (I)-1 = I;
  • Question 8
    5 / -1
    An equilateral triangle has each side equal to a. If the co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\) equals:
    Solution

    Concept:

    Area of equilateral triangle = \(\frac{\sqrt{3}}{4}\)×a2

    Calculation:

    Given: The co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\)

    ⇒ (△ ABC ) = \(\dfrac{1}{2}\) \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\) = ( \(\frac{\sqrt{3}}{4}\)) ×a2

    On squaring both side, 

    \(\dfrac{1}{4}\)  \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}^2\) = \(\dfrac{3a^4}{16}\)

    ⇒ \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}^2\) = \(\dfrac{3a^4}{4}\)

  • Question 9
    5 / -1
    If A = \(\left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{ - \sin {\rm{\theta }}}\\ {\sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\), then A-1?
    Solution

    Concept:

    Let \(A = \left[ {{a_{ij}}} \right]\) be a square matrix.

    Steps for obtaining Inverse of the matrix 

    1. We need to calculate cofactors of all elements

    \(\Rightarrow {{\rm{C}}_{{\rm{ij}}}}{\rm{\;or\;}}{{\rm{A}}_{{\rm{ij}}}} = {\left( { - 1} \right)^{{\rm{i}} + {\rm{j}}}}{\rm{\;}}{{\rm{M}}_{{\rm{ij}}}}\)

    Here, Mij = Minor of matrix A

    2. Transpose of the cofactor is called Adjoint of the matrix

    ⇒ Adj (A) = CT

    3. If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right]\) then determinant of A is given by: |A| = (a­11 × a22) – (a12 – a21).

    4. Inverse of matrix A = A-1\(\frac{{{\rm{Adj\;}}\left( {\rm{A}} \right)}}{{\left| {\rm{A}} \right|}}\)

    Calculation:

    Given:

     A = \(\left[ {\begin{array}{*{20}{c}} {\cos \theta }&{ - \sin \theta }\\ {\sin \theta }&{\cos \theta } \end{array}} \right]\)

    ⇒ Det (A) = |A| = (cos θ × cos θ) – (sin θ × -sin θ) = cos2 θ + sin2 θ = 1

    Now find the Cofactors of matrix A,

    A11 = (-1)1+1 cos θ = cos θ

    A12 = (-1)1+2 (sin θ) = -sin θ

    A21 = (-1)2+1 (-sin θ) = sin θ

    A22 = (-1)2+2 cos θ = cos θ

    Cofactors of matrix A = \(= {\rm{\;}}{{\rm{A}}_{{\rm{ij}}}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{- \sin {\rm{\theta }}}\\ { \sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\)

    Now, Adj (A) = \({\left[ {{{\rm{A}}_{{\rm{ij}}}}} \right]^{\rm{T}}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{ \sin {\rm{\theta }}}\\ {-\sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\)

    Hence A-1\(\frac{{{\rm{Adj\;}}\left( {\rm{A}} \right)}}{{\left| {\rm{A}} \right|}} = \;\frac{{\left[ {\begin{array}{*{20}{c}} {\cos \theta }&{ \sin \theta }\\ {-\sin \theta }&{\cos \theta } \end{array}} \right]}}{1} = \;\left[ {\begin{array}{*{20}{c}} {\cos \theta }&{ \sin \theta }\\ {-\sin \theta }&{\cos \theta } \end{array}} \right]\)

    ∴ Option 1 is correct.

    Shortcut Method to finding Adj (A)

    Let A = \(\left[ {\begin{array}{*{20}{c}} {\rm{a}}&b\\ {\rm{c}}&{\rm{d}} \end{array}} \right]\)

    Adj A = \(\left[ {\begin{array}{*{20}{c}} {\rm{d}}&{ - b}\\ { - {\rm{c}}}&{\rm{a}} \end{array}} \right]\)

    Note: Interchange the diagonal elements and change the sign of remaining elements.

  • Question 10
    5 / -1
    If A is a 2 × 2 matrix and |A| = 5, what is |5A| ? (| | denotes determinant)
    Solution

    Concept:

    Properties of determinants:

    For a n×n matrix A, det(kA) = kn det(A).

    Calculation:

    Given:

    |A| = 5

    k = 5

    From the properties of the determinants, we know that |KA| = Kn |A|, where n is the order of the determinant.

    Here, n = 2, therefore, the answer is K2 |A|.

    |5A| = 52|A|

    |5A| = 5× 5 = 125

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now