Concept:
Let \(A = \left[ {{a_{ij}}} \right]\) be a square matrix.
Steps for obtaining Inverse of the matrix
1. We need to calculate cofactors of all elements
\(\Rightarrow {{\rm{C}}_{{\rm{ij}}}}{\rm{\;or\;}}{{\rm{A}}_{{\rm{ij}}}} = {\left( { - 1} \right)^{{\rm{i}} + {\rm{j}}}}{\rm{\;}}{{\rm{M}}_{{\rm{ij}}}}\)
Here, Mij = Minor of matrix A
2. Transpose of the cofactor is called Adjoint of the matrix
⇒ Adj (A) = CT
3. If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right]\) then determinant of A is given by: |A| = (a11 × a22) – (a12 – a21).
4. Inverse of matrix A = A-1 = \(\frac{{{\rm{Adj\;}}\left( {\rm{A}} \right)}}{{\left| {\rm{A}} \right|}}\)
Calculation:
Given:
A = \(\left[ {\begin{array}{*{20}{c}} {\cos \theta }&{ - \sin \theta }\\ {\sin \theta }&{\cos \theta } \end{array}} \right]\)
⇒ Det (A) = |A| = (cos θ × cos θ) – (sin θ × -sin θ) = cos2 θ + sin2 θ = 1
Now find the Cofactors of matrix A,
A11 = (-1)1+1 cos θ = cos θ
A12 = (-1)1+2 (sin θ) = -sin θ
A21 = (-1)2+1 (-sin θ) = sin θ
A22 = (-1)2+2 cos θ = cos θ
Cofactors of matrix A = \(= {\rm{\;}}{{\rm{A}}_{{\rm{ij}}}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{- \sin {\rm{\theta }}}\\ { \sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\)
Now, Adj (A) = \({\left[ {{{\rm{A}}_{{\rm{ij}}}}} \right]^{\rm{T}}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{ \sin {\rm{\theta }}}\\ {-\sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\)
Hence A-1 = \(\frac{{{\rm{Adj\;}}\left( {\rm{A}} \right)}}{{\left| {\rm{A}} \right|}} = \;\frac{{\left[ {\begin{array}{*{20}{c}} {\cos \theta }&{ \sin \theta }\\ {-\sin \theta }&{\cos \theta } \end{array}} \right]}}{1} = \;\left[ {\begin{array}{*{20}{c}} {\cos \theta }&{ \sin \theta }\\ {-\sin \theta }&{\cos \theta } \end{array}} \right]\)
∴ Option 1 is correct.

Shortcut Method to finding Adj (A)
Let A = \(\left[ {\begin{array}{*{20}{c}} {\rm{a}}&b\\ {\rm{c}}&{\rm{d}} \end{array}} \right]\)
Adj A = \(\left[ {\begin{array}{*{20}{c}} {\rm{d}}&{ - b}\\ { - {\rm{c}}}&{\rm{a}} \end{array}} \right]\)
Note: Interchange the diagonal elements and change the sign of remaining elements.