Self Studies

Mathematics Tes...

TIME LEFT -
  • Question 1
    5 / -1

    If A and B are two n x n non singular matrix, then _____________

  • Question 2
    5 / -1

    Which of the following is not true for the determinant of a square matrix A of order 3?

  • Question 3
    5 / -1

    A is a scalar matrix with scalar k ≠ 0 of order 3. Then A-1 is

  • Question 4
    5 / -1

    If \(\left| {\;\begin{array}{*{20}{c}} a&b&0\\ 0&a&b\\ b&0&a \end{array}} \right| = 0\) , then which one of the following is correct?

  • Question 5
    5 / -1

    What is the value of the following determinant?

    \(\begin{vmatrix} \cos \rm C & \tan \rm A & 0\\ \sin \rm B & 0 & -\tan \rm A\\ 0 & \sin \rm B & \cos \rm C \end{vmatrix}\)

  • Question 6
    5 / -1

    Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det  A = 3 and det B = 4. Then the det (2AB) is

  • Question 7
    5 / -1

    If \(A = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right)\) then (AAT)-1 = ?

  • Question 8
    5 / -1

    An equilateral triangle has each side equal to a. If the co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\) equals:

  • Question 9
    5 / -1

    If A = \(\left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{ - \sin {\rm{\theta }}}\\ {\sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\), then A-1?

  • Question 10
    5 / -1

    If A is a 2 × 2 matrix and |A| = 5, what is |5A| ? (| | denotes determinant)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now