\(G\left( s \right)H\left( s \right) = \frac{K}{{{{\left( {s + 2} \right)}^2}\left( {s + 3} \right)}}\)
Position error constant \(\mathop {{\rm{lt}}}\limits_{s \to 0} G\left( s \right)H\left( s \right)\)
\(= \mathop {{\rm{It}}}\limits_{s \to 0} \frac{K}{{{{\left( {s + 2} \right)}^2}\left( {s + 3} \right)}}\)
\(= \frac{K}{{12}}\)
Given that, KP ≥ 2
⇒ K ≥ 24
Gain margin \(= \frac{1}{{\left| {G\left( {j{\rm{\omega }}} \right)H\left( {j{\rm{\omega }}} \right)} \right|}}\;at\;{\rm{\omega }} = {{\rm{\omega }}_{pc}}\)
At ωpc, ∠G(jω) H(jω) = -180°
\(\Rightarrow - 2{\tan ^{ - 1}}\left( {\frac{{\rm{\omega }}}{2}} \right) - {\tan ^{ - 1}}\left( {\frac{{\rm{\omega }}}{3}} \right) = \; - 180^\circ\)
\(\Rightarrow {\tan ^{ - 1}}\left( {\frac{{\rm{\omega }}}{2}} \right) + {\tan ^{ - 1}}\left( {\frac{{\rm{\omega }}}{2}} \right) + {\tan ^{ - 1}}\left( {\frac{{\rm{\omega }}}{3}} \right) = 180^\circ\)
\(\Rightarrow {\tan ^{ - 1}}\left( {\frac{{\rm{\omega }}}{{\frac{{1 - {{\rm{\omega }}^2}}}{4}}}} \right) + {\tan ^{ - 1}}\left( {\frac{{\rm{\omega }}}{3}} \right) = 180^\circ\)
\(\Rightarrow \left( {\frac{{\rm{\omega }}}{{\frac{{1 - {{\rm{\omega }}^2}}}{4}}}} \right) + \left( {\frac{{\rm{\omega }}}{3}} \right) = 0\)
\(\Rightarrow \frac{{{{\rm{\omega }}^2}}}{4} - 1 = 3\)
⇒ ω = 4 rad/sec
Gain margin \(= \frac{{\left( {{{\rm{\omega }}^2} + 4} \right)\left( {\sqrt {{{\rm{\omega }}^2} + 9} } \right)}}{K} = \frac{{\left( {20} \right)\left( 5 \right)}}{K} = \frac{{100}}{K}\)
Given that,
Gain margin ≥ 3
\(\Rightarrow \frac{{100}}{K} \ge 3 \Rightarrow \;K \le \frac{{100}}{3}\)
Range of K is: \(24 \le K \le \frac{{100}}{3}\)
Maximum value \(= \frac{{100}}{3}\)
Minimum value = 24
Difference \(= \frac{{100}}{3} - 24 = \frac{{28}}{3} = 9.33\)