Concept:
For a given position of Fermi-level, the concentration of electrons and holes are given by:
\({n_0} = {N_c}{e^{ - \frac{{\left( {{E_c} - {E_F}} \right)}}{{kT}}}}\)
\({p_0} = {N_v}{e^{ - \frac{{\left( {{E_F} - {E_V}} \right)}}{{kT}}}}\)
Nc and Nv are the effective density of states.
We can now calculate the intrinsic Fermi level position.
For the intrinsic semiconductor, the electron and hole concentrations are equal.
∴ We can write:
\({N_c}\;{e^{ - \left( {\frac{{{E_c} - {E_{Fi}}}}{{kT}}} \right)}} = {N_v}\;{e^{ - \left( {\frac{{{E_{Fi}} - {E_v}}}{{kT}}} \right)}}\)
Taking natural lag of both sides of the above equation, we get:
\({E_{{F_i}}} = \frac{1}{2}\left( {{E_c} + {E_v}} \right) + \frac{1}{2}kT\;In\;\left( {\frac{{{N_v}}}{{{N_c}}}} \right)\)
Since, \(\frac{1}{2}\left( {{E_c} + {E_v}} \right) = {E_{midgap}}\)
\({E_{{F_i}}} = {E_{midgap}} + \frac{1}{2}kT\;In\left( {\frac{{{N_v}}}{{{N_c}}}} \right)\)
\({E_{Fi}} - {E_{midgap}} = \frac{1}{2}kT\;In\;\left( {\frac{{{N_v}}}{{{N_c}}}} \right)\) ---(1)
Also, since \({N_c} \propto {\left( {m_n^*} \right)^{3/2}}\)
And \({N_v} \propto {\left( {m_p^*} \right)^{3/2}}\)
Equation (1) becomes:
\({E_{{F_i}}} - {E_{mid}} = \frac{3}{4}\;ln\;\left( {\frac{{m_p^*}}{{m_n^*}}} \right)\) ---(2)
m*n = Effective mass of electron
m*p = Effective mass of holes
Calculation:
Given, m*n = 1.08 m0
m*p = 0.56 m0
\({E_F} - {E_{mid}} = \frac{3}{4}kT\;In\left( {\frac{{0.56\;{m_0}}}{{1.08\;{m_0}}}} \right)\)
\(= \frac{3}{4} \times 0.026 \times \left( { - 0.656} \right)\)
= -0.0128 eV
The negative sign indicates that the Fermi level is 0.0128 below the centre of the bandgap.