Concept:
Junction/depletion capacitance is calculated as:
\({C_j} = \frac{{\varepsilon A}}{W}\) ---(1)
W = Width of the depletion region given by:
\(W = {\left[ {\left[ {\frac{{2\varepsilon }}{q}\left( {\frac{1}{{{N_A}}} + \frac{1}{{{N_D}}}} \right)} \right]\left( {{V_{bi}} - V} \right)} \right]^{1/2}}\) ---(2)
Vbi = built-in potential
Va = Applied Voltage from anode to cathode
Substituting W from Equation (2) to Equation (1), we get:
\({C_j} = \frac{{\varepsilon A}}{{{{\left[ {\frac{{2\varepsilon }}{q}\left( {\frac{1}{{{N_A}}} + \frac{1}{{{N_D}}}} \right)\left( {{V_{bi}} - V} \right)} \right]}^{1/2}}}}\)
Application:
Since we have n+p junction, we have:
Nd ≫ Na
The junction capacitance is approximated as:
\({{C}_{j}}=\sqrt{\frac{e~\epsilon {{N}_{a}}{{N}_{d}}}{2\left( {{V}_{bi}}+{{V}_{R}} \right)\left( {{N}_{d}} \right)}}\)
\({{C}_{j}}=\sqrt{\frac{e\epsilon {{N}_{a}}}{2\left( {{V}_{bi}}+{{V}_{R}} \right)}}\) ---(1)
For Na’ = 2 Na, neglecting the change in built-in potential, the new depletion capacitance can be approximated as:
\({{C}_{j}}\left( 2{{N}_{a}} \right)=\sqrt{\frac{e\epsilon \left( 2{{N}_{a}} \right)}{e\left( {{V}_{bi}}+{{V}_{R}} \right)}}\) ---(2)
Diving Cj(2Na) with Cj, we get:
\(\frac{{{C}_{j}}\left( 2{{N}_{a}} \right)}{{{C}_{j}}}=\sqrt{2}\)
\(\frac{{{C}_{j}}\left( 2{{N}_{a}} \right)}{{{C}_{j}}}=1.424\)
Now, the percentage change in junction capacitance will be:
\(\frac{{{C}_{j}}\left( 2{{N}_{a}} \right)-{{C}_{j}}}{{{C}_{j}}}\times 100\)
\(=\frac{1.414-1}{1}\times 100\)
= 41.4%