Concept:
The built-in potential is defined as
\({V_{bi}} = \frac{{kT}}{q}\;In\;\left( {\frac{{{N_A}{N_D}}}{{n_i^2}}} \right)\) ---(1)
Also, the carrier majority concentration is related to the Fermi-level as:
\({N_A} = {n_i}\;{e^{\frac{{\left( {{E_i} - {E_F}} \right)}}{{kT}}\;}}\)
\({N_p} = {n_i}{e^{\frac{{\left( {{E_F} - {E_i}} \right)}}{{kT}}}}\)
Ei = Intrinsic Fermi level position
EF = Fermi Level of the doped semiconductor
The above two equations can be rearranged as:
\({\left( {{E_i} - {E_F}} \right)_{p - side}} = kT\;In\;\left( {\frac{{{N_A}}}{{{n_i}}}} \right)\)
\({\left( {{E_F} - {E_i}} \right)_{n - side}} = kT\;In\;\left( {\frac{{{N_D}}}{{{n_i}}}} \right)\)
So, the built-in potential from Equation (1) can also now be defined as:
\({V_{bi}} = \frac{1}{q}\left( {{{\left( {{E_i} - {E_F}} \right)}_{p - side}} + {{\left( {{E_F} - {E_i}} \right)}_{n - side}}} \right)\) ---(1)
Application:
The built-in potential barrier of the collector base will be:
\({V_{bi\left( {CB} \right)}} = \frac{{kT}}{q}\;ln\left( {\frac{{{N_C}}}{{{n_i}}}} \right)\)
Similarly, for the emitter-base junction, the built-in potential will be:
\({V_{bi\left( {EB} \right)}} = \frac{{kT}}{q}\;In\left( {\frac{{{N_E}}}{{{n_i}}}} \right)\)
Since the base is the common region between the two, the potential difference between the collector and emitter is obtained using Equation (1) as:
\(\left| {{\rm{\Delta }}{V_{CB}}} \right| = \frac{1}{q}\left[ {{{\left( {{E_i} - {E_f}} \right)}_{emitter}} - {{\left( {{E_i} - {E_f}} \right)}_{collector}}} \right]\)
\(= \frac{{kT}}{q}\left[ {ln\left( {\frac{{{N_{AE}}}}{{{n_i}}}} \right) - ln\left( {\frac{{{N_{AC}}}}{{{n_i}}}} \right)} \right]\)
\(= \frac{{kT}}{q}\;ln\;\left( {\frac{{{N_{AE}}}}{{{N_{AC}}}}} \right)\)
\(\left| {{\rm{\Delta }}{V_{CB}}} \right| = 0.026 \times \;ln\;\left( {\frac{{5 \times {{10}^{17}}}}{{{{10}^{14}}}}} \right)\)
ΔV
CE = 0.221 V