Self Studies

Engineering Mathematics Test 3

Result Self Studies

Engineering Mathematics Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider a function f = yx, then the value of \(\left( {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right)\) at point (2, 1) is -
    Solution

    \(\frac{{\partial f}}{{\partial y}} = \frac{\partial }{{\partial y}}\left( {{y^x}} \right) = x{y^{x - 1}}\) 

    \(\frac{{{\partial ^2}f}}{{\partial x\partial y}} = \frac{\partial }{{\partial x}}\left( {x{y^{x - 1}}} \right) = x\frac{\partial }{{\partial x}}{y^{x - 1}} + {y^{x - 1}}\frac{\partial }{{\partial x}}\left( x \right)\;\) 

    \(\therefore \frac{{{\partial ^2}f}}{{\partial x\partial y}} = x\;{y^{x - 1}}\log y + {y^{x - 1}}\) 

    Putting x = 2 and y = 1,

    \(\frac{{{\partial ^2}f}}{{\partial x\partial y}} = 2 \times {1^{2 - 1}}\log 1 + {1^{2 - 1}}\) = 1
  • Question 2
    1 / -0

    If R is the region 0 ≤ x ≤ y ≤ L, then

    \(\mathop \int\!\!\!\int \limits_R \left( {{x^2} + {y^2}} \right)dx\;dy\) is

    Solution

    The given region is, R: 0 ≤ x ≤ y ≤ L

    The limits of x: 0 ≤ x ≤ L

    The limits of y: x ≤ y ≤ L

    \(\mathop \int\!\!\!\int \limits_R \left( {{x^2} + {y^2}} \right)dx\;dy\) 

    \( = \mathop \smallint \limits_{x = 0}^{x = L} \mathop \smallint \limits_{y = x}^{y = L} \left( {{x^2} + {y^2}} \right)dx\;dy\) 

    \(= \mathop \smallint \limits_{x = 0}^L \left[ {{x^2}y + \frac{{{y^3}}}{3}} \right]_x^2dx\) 

    \( = \mathop \smallint \limits_{x = 0}^L \left[ {{x^2}L + \frac{{{L^3}}}{3} - \frac{{{x^3}}}{3} - {x^3}} \right]dx\;\) 

    \(= \mathop \smallint \limits_{x = 0}^L \left[ {{x^2}L + \frac{{{L^3}}}{3} - \frac{{4{x^3}}}{3}} \right]dx\) 

    \(= \left[ {L\frac{{{x^3}}}{3} + \frac{{{L^3}}}{3}x - \frac{{{x^4}}}{3}} \right]_0^L\) 

    \(= \frac{{{L^4}}}{3} + \frac{{{L^4}}}{3} - \frac{{{L^4}}}{3} = \frac{{{L^4}}}{3}\) 

  • Question 3
    1 / -0

    Which one of the following integrals is NOT an improper integral?

    Solution

    A and B are improper integrals since they have infinite (upper/lower) limits of integration.

    D is an improper integral because the integrand 1 / x is undefined at \(x = 0\epsilon\left[ { - 2,\;2} \right]\).

    C is not an improper integral because the integrand is defined everywhere in the finite limits of integration.

  • Question 4
    1 / -0

    The value of \(\mathop \smallint \limits_0^{\frac{\pi }{2}} \mathop \smallint \limits_0^{\frac{\pi }{2}} \mathop \smallint \limits_0^5 \sin \theta d\theta \;d\phi \;dr\) expressed in spherical co-ordinate will be ______ π.

    Solution

    \(I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \mathop \smallint \limits_0^{\frac{\pi }{2}} \mathop \smallint \limits_0^5 \sin \theta d\theta \;d\phi \;dr\)

    \(I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin \theta \;d\theta \mathop \smallint \limits_0^{\frac{\pi }{2}} d\phi \mathop \smallint \limits_0^5 dr\)

    \( = \left[ { - \cos \theta } \right]_0^{\frac{\pi }{2}}\left[ \phi \right]_0^{\frac{\pi }{2}}\left[ r \right]_0^5\)

    \(= 1 \times \frac{\pi }{2} \times 5 = 2.5\;\pi\)

  • Question 5
    1 / -0
    If Z = eax + by F(ax - by); the value of \(b\frac{{\partial Z}}{{\partial x}} + a\frac{{\partial Z}}{{\partial y}}\) is
    Solution

    We are given z = eax + by⋅ f(ax - by)

    Now, \(\frac{{\partial z}}{{\partial x}} = a \cdot {e^{ax + by}} \cdot F\left( {ax - by} \right) + a{e^{ax + by}} \cdot F'\left( {ax - by} \right)\)

    \(b\frac{{\partial z}}{{\partial x}} = ab\;[z + {e^{ax + by}} \cdot F'\left( {ax - by} \right)\) ---(1)

    Now, \(\frac{{\partial z}}{{\partial y}} = b \cdot {e^{ax + by}} \cdot F\left( {ax - by} \right) - b \cdot {e^{ax + by}} \cdot F'\left( {ax - by} \right)\)

    \(a\frac{{\partial z}}{{\partial y}} = ab\;\left[ {z - {e^{\left( {ax + by} \right)}} \cdot F'\left( {ax - by} \right)} \right]\) ---(2)

    Add equation (1) & (2), we get

    \(b\frac{{\partial z}}{{\partial x}} + a\frac{{\partial z}}{{\partial y}} = 2abz\)
  • Question 6
    1 / -0
    The time period of simple pendulum is \(T = 2\pi \sqrt {\frac{l}{g}}\). Find maximum error % in T due to possible error upto 1% in l and 2.5% in g.
    Solution

    \(T = 2\pi \sqrt {\frac{l}{g}}\)

    \(\log T = \log 2\pi + \frac{1}{2}\log l - \frac{1}{2}\log g\)

    \(\frac{1}{T}\delta T = 0 + \frac{1}{2}\frac{{\delta l}}{l} - \frac{1}{2}\frac{{\delta g}}{g}\)

    \(\frac{{\delta T}}{T}100 = \frac{1}{2}\left( {\frac{{\delta l}}{l}100 - \frac{{\delta g}}{g}100} \right)\)

    \(= \frac{1}{2}\left( {1 \pm 2.5} \right)\)

    = 1.75% or -0.75%

    Maximum error in T = 1.75%
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now