Concept:
Green’s Theorem:
If M(x, y), N(x, y), My and Nx be continuous in a region E of the xy-plane bounded by a closed curve C, then
\(\mathop \smallint \limits_C \left( {Mdx + Ndy} \right) = \mathop \int\!\!\!\int \limits_E \left( {\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}}} \right)dxdy\)
Calculation:
\(\frac{2}{\pi }\mathop \oint \limits_\gamma \left( { - {y^3}dx + {x^3}dy} \right)\)
It is in the form of \(\mathop \smallint \limits_C \left( {Mdx + Ndy} \right)\)
M = -y3 and N = x3
\(\frac{{\partial N}}{{\partial x}} = 3{x^2}\)
\(\frac{{\partial M}}{{\partial y}} = - 3{y^2}\)
\(\frac{2}{\pi }\mathop \oint \limits_\gamma \left( { - {y^3}dx + {x^3}dy} \right) = \frac{2}{\pi }\mathop \int\!\!\!\int \limits_E \left( {3{x^2} + 3{y^2}} \right)dxdy\)
Changing to polar coordinates (r, θ), r varies from 0 to 1 and θ varies from 0 to 2π.
\( = \frac{2}{\pi }\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^{2\pi } \left( {3{{\left( {r\cos \theta } \right)}^2} + 3{{\left( {r\sin \theta } \right)}^2}} \right)rd\theta dr\)
\( = \frac{2}{\pi }\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^{2\pi } 3{r^3}d\theta dr\)
\( = \frac{2}{\pi }\mathop \smallint \limits_0^1 \left[ {3{r^3}\theta } \right]_0^{2\pi }dr\)
\( = \frac{6}{\pi }\mathop \smallint \limits_0^1 2\pi {r^3}dr\)
\( = \frac{6}{\pi }\left[ {\frac{{2\pi {r^4}}}{4}} \right]_0^1 = 3\)