Self Studies

Engineering Mathematics Test 5

Result Self Studies

Engineering Mathematics Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If C is the path along the curve y = x2 – 4x + 4 from (0, 4) to (2, 0), then \(\mathop \oint \nolimits_C \left( {y\hat i - 3x\hat j} \right) \cdot \overrightarrow {dr} \) is
    Solution

    y = x2 – 4x + 4

    dy = 2x dx – 4 dx = (2x - 4) dx

    \(\overrightarrow {dr} = dx\;\hat i + dy\;\hat j\) 

    \(\mathop \oint \nolimits_C \left( {y\hat i - 3x\hat j} \right) \cdot \left( {dx\;\hat i + dy\;\hat j} \right)\) 

    \( = \mathop \oint \nolimits_C ydx - 3x\;dy\) 

    \( = \mathop \oint \nolimits_C \left( {{x^2} - 4x + 4} \right)dx - 3x\left( {2x - 4} \right)dx\) 

    \( = \mathop \oint \nolimits_C \left( { - 5{x^2} + 8x + 4} \right)dx\) 

    \(\mathop \smallint \limits_{x = 0}^2 \left( { - 5{x^2} + 8x + 4} \right)dx\) 

    \( = \left[ {\frac{{ - 5{x^3}}}{3} + 4{x^2} + 4x} \right]_0^2\) 

    \( = \frac{{ - 5}}{3}\left( 8 \right) + 4\left( 4 \right) + 4\left( 2 \right)\) 

    \(\frac{{ - 40}}{3} + 24 = \frac{{32}}{3}\)

  • Question 2
    1 / -0

    The value of the integral

    \(\mathop \oint \nolimits_s \vec r.\vec n\;ds\)

    over the closed surface S bounding a volume V, where \(\vec r = x i + y j + z k\) is the position vector and n̂ is normal to the surface S, is
    Solution

    Concept:

    According to Gauss Divergence theorem:

    \(\oint A.ds=\iiint{\left( \nabla .A \right)dv}\)

    \(\oint \overrightarrow{F.}\hat{n}ds=\iiint{\left( \nabla .F \right)dv}\)

    Calculation:

    Given that S is a closed surface:

    \(\oint \overrightarrow{r.}\hat{n}ds=\iiint{\left( \nabla .r \right)dv}\)

    \(\vec r = x\hat i + y\hat j + z\hat k\)

    \(\nabla .r = \frac{\partial }{{\partial x}}\left( x \right) + \frac{\partial }{{\partial y}}\left( y \right) + \frac{\partial }{{\partial z}}\left( z \right) = 3\)

    \(\oint \overrightarrow{r.}\hat{n}ds=\iiint{\left( \nabla .r \right)dv}=\iiint{3dv=3V}\)

  • Question 3
    1 / -0

    The value of \(\mathop \smallint \limits_C^\; \left( {2x + 3y} \right)dx - \left( {3x - 4y} \right)dy\) where c is the circle with radius as 1 and centre at origin.

    Solution

    C ≡ x2 + y2 = 1

    Let x = r cos θ, y = r sin θ

    ⇒ dx = -sin θ dθ, dy = cos θ dθ

    \(\begin{array}{l}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left[ {\left( {2\cos \theta + 3\sin \theta } \right)\left( { - \sin \theta } \right)d\theta - \left( {3\cos \theta - 4\sin \theta } \right)\left( {\cos \theta } \right)d\theta } \right]\\ = \mathop \smallint \limits_0^{2\pi } \left[ { - 2\sin \theta \cos \theta - 3{{\sin }^2}\theta - 3{{\cos }^2}\theta + 4\sin \theta \cos \theta } \right]d\theta \\ = \mathop \smallint \limits_0^{2\pi } \left( {2\sin \theta \cos \theta - 3} \right)d\theta \\ = \mathop \smallint \limits_0^{2\pi } \left( {\sin 2\theta - 3} \right)d\theta \end{array}\) 

    = -3(2π) = -6π

  • Question 4
    1 / -0
     Evaluate \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} \) where \(\vec F\left( {x,\;y,\;z} \right) = x\hat i + y\hat j + 3\left( {{x^2} + {y^2}} \right)\hat k\) and C is the boundary of the part of the paraboid where z2 = 64 – x2 – y2 which lies above the xy-plane and C is oriented counter clockwise when viewed from above.
    Solution

    Concept:

    By stokes theorem,

    \(\mathop \oint \limits_C^\; F.dr = \mathop \int\!\!\!\int \limits_S^\; Curl\;F.Nds\)

    Calculation:

    \(\vec F\left( {x,\;y,\;z} \right) = x\hat i + y\hat j + 3\left( {{x^2} + {y^2}} \right)\hat k\)

     

    \(\nabla \times \vec F = \left| {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ x&y&{3\left( {{x^2} + {y^2}} \right)} \end{array}} \right|\)

    = i (6y) – j(6x) = 6y î - 6x ĵ

    S: x2 + y2 + z2 – 64 = 0

    \(ds = + 2x\hat i + 2y\hat j + 2z\hat k\)

    \(\left( {\nabla \times \vec F} \right) \cdot ds = \left( {6y\hat i - 6x\hat j} \right) \cdot \left( {2x\hat i + 2y\hat j + 2z\hat k} \right)\)

    = 12xy – 12xy + 0 = 0

    \( \Rightarrow \mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} = 0\)

  • Question 5
    1 / -0

    If S is the surface of the sphere x2 + y2 + z2 = a2, then the value of

    \(\mathop \int\!\!\!\int \limits_S \left( {x + z} \right)dydz + \left( {y + z} \right)dzdx + \left( {x + y} \right)dxdy\) is
    Solution

    From Gauss divergence theorem,

    \(\mathop \iint \limits_S F.ds = \iiint\limits_V {\nabla .\overrightarrow F dV}\)

    \({\rm{\vec F}} = \left( {x + z} \right)i + \left( {y + z} \right)j + \left( {x + y} \right)k\)

    \(\nabla .{\rm{\vec F}} = 1 + 1 + 0 = 2\)

    \(\iiint\limits_{V}{\nabla .\overrightarrow{F}dV}=\iiint{2dV}\)

    \(2\iiint{dV}\)

    The volume of the sphere \(= \frac{4}{3}\pi {a^3}\)

    \(\Rightarrow \iiint\limits_{V}{\nabla .\overrightarrow{F}dV}=2\times \frac{4}{3}\pi {{a}^{3}}=\frac{8}{3}\pi {{a}^{3}}\)

    \(\Rightarrow \mathop \int\!\!\!\int \limits_S F.ds = \frac{8}{3}\pi {a^3}\)
  • Question 6
    1 / -0

    If S be any closed surface, evaluate \(\mathop \smallint \limits_S^\; Curl\;\vec F.\vec {ds}\)

    Solution

    Explanation:

    Cut open the surface S by any plane and Let S1, S2 denotes its upper and lower portions.

    Let C be the common curve bounding both these portions.

    \(\mathop \smallint \limits_S^\; Curl\;\vec F.\vec ds = \mathop \smallint \limits_{{S_1}}^\; Curl\;\vec F. \vec ds + \mathop \smallint \limits_{{S_2}}^\; Curl\;\vec F.\vec ds\)

    By stokes theorem,

    \(\begin{array}{l} \mathop \smallint \limits_S^\; Curl\;\vec F.\vec ds = \mathop \smallint \limits_C^\; \vec F.\vec dr\\ \Rightarrow \mathop \smallint \limits_S^\; Curl\;\vec F.\vec ds = \mathop \smallint \limits_C^\; \vec F.\vec dr - \mathop \smallint \limits_C^\; \vec F.\vec dr = 0 \end{array}\)

    The second integral is negative because it is traversed in a direction opposite to that of the first.

  • Question 7
    1 / -0
    For vectors \(\vec F = 3xy\hat i - {y^2}\hat j\) and \(\vec R = x\hat i + y\hat j\), the value of \(\mathop \smallint \limits_C \vec F.d\vec R\) on the curve C (y = 2x2) in the x-y plane from (0, 0) to (1, 2) is
    Solution

    \(\vec F = 3xy\hat i - {y^2}\hat j\) and \(\vec R = x\hat i + y\hat j\)

    \(\mathop \smallint \limits_C \vec F.d\vec R = \mathop \smallint \limits_C \left( {3xy\hat i - {y^2}\hat j} \right).d\left( {x\hat i + y\hat j} \right) = \mathop \smallint \limits_C \left( {3xydx - {y^2}dy} \right)\)

    Substituting y = 2x2 and x is varying from 0 to 1

    ⇒ dy = 4x dx

    \(\mathop \smallint \limits_C \vec F.d\vec R = \mathop \smallint \limits_C \left( {3x\left( {2{x^2}} \right)dx - {{\left( {2{x^2}} \right)}^2}(4xdx} \right)\)

    \(= \mathop \smallint \limits_0^1 \left( {6{x^3} - 16{x^5}} \right)dx\)

    \(= \left[ {\frac{6}{4}{x^4}} \right]_0^1 - \left[ {\frac{{16}}{6}{x^6}} \right]_0^1\)

    \(= \frac{6}{4} - \frac{8}{6} = \frac{{18 - 32}}{{12}} = - \frac{7}{6} = - 1.17\)

    Alternate method:

    \(\vec F = 3xy\hat i - {y^2}\hat j\) and \(\vec R = x\hat i + y\hat j\)

    \(\mathop \smallint \limits_C \vec F.d\vec R = \mathop \smallint \limits_C \left( {3xy\hat i - {y^2}\hat j} \right).d\left( {x\hat i + y\hat j} \right) = \mathop \smallint \limits_C \left( {3xydx - {y^2}dy} \right)\)

    Let x = t

    ⇒ dx = dt

    y = 2x2 = 2t2

    ⇒ dy = 4tdt

    t varies from 0 to 1.

    \(\mathop \smallint \limits_C \vec F.d\vec R = \mathop \smallint \limits_C \left( {3\left( t \right)\left( {2{t^2}} \right)dt - {{\left( {2{t^2}} \right)}^2}(4tdt} \right))\)

    \(= \mathop \smallint \limits_0^1 \left( {6{t^3} - 16{t^5}} \right)dt\)

    \(= \left[ {\frac{6}{4}{t^4}} \right]_0^1 - \left[ {\frac{{16}}{6}{t^6}} \right]_0^1\)

    \(= \frac{6}{4} - \frac{8}{6} = \frac{{18 - 32}}{{12}} = - \frac{7}{6} = - 1.17\)
  • Question 8
    1 / -0

    The value of the line integral \(\frac{2}{\pi }\mathop \oint \limits_\gamma \left( { - {y^3}dx + {x^3}dy} \right)\), where γ is the circle x2 + y2 = 1 oriented counter clockwise, is ________.

    Solution

    Concept:

    Green’s Theorem:

    If M(x, y), N(x, y), My and Nx be continuous in a region E of the xy-plane bounded by a closed curve C, then

    \(\mathop \smallint \limits_C \left( {Mdx + Ndy} \right) = \mathop \int\!\!\!\int \limits_E \left( {\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}}} \right)dxdy\)

    Calculation:

    \(\frac{2}{\pi }\mathop \oint \limits_\gamma \left( { - {y^3}dx + {x^3}dy} \right)\)

    It is in the form of \(\mathop \smallint \limits_C \left( {Mdx + Ndy} \right)\)

    M = -y3 and N = x3

    \(\frac{{\partial N}}{{\partial x}} = 3{x^2}\)

    \(\frac{{\partial M}}{{\partial y}} = - 3{y^2}\)

    \(\frac{2}{\pi }\mathop \oint \limits_\gamma \left( { - {y^3}dx + {x^3}dy} \right) = \frac{2}{\pi }\mathop \int\!\!\!\int \limits_E \left( {3{x^2} + 3{y^2}} \right)dxdy\)

    Changing to polar coordinates (r, θ), r varies from 0 to 1 and θ varies from 0 to 2π.

    \( = \frac{2}{\pi }\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^{2\pi } \left( {3{{\left( {r\cos \theta } \right)}^2} + 3{{\left( {r\sin \theta } \right)}^2}} \right)rd\theta dr\)

    \( = \frac{2}{\pi }\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^{2\pi } 3{r^3}d\theta dr\)

    \( = \frac{2}{\pi }\mathop \smallint \limits_0^1 \left[ {3{r^3}\theta } \right]_0^{2\pi }dr\)

    \( = \frac{6}{\pi }\mathop \smallint \limits_0^1 2\pi {r^3}dr\)

    \( = \frac{6}{\pi }\left[ {\frac{{2\pi {r^4}}}{4}} \right]_0^1 = 3\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now