Self Studies

Mathematics Test - 14

Result Self Studies

Mathematics Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(\mathrm{f}(\mathrm{x})=\frac{\sin ^{2} \mathrm{x}+4 \sin \mathrm{x}+5}{2 \sin ^{2} \mathrm{x}+8 \sin \mathrm{x}+8},\) then range of \(\mathrm{f}(\mathrm{x})\) is \(-\)

    Solution
    \(f(x)=\frac{\sin ^{2} x+4 \sin x+5}{2 \sin ^{2} x+8 \sin x+8}\)
    \(\Rightarrow f(x)=\frac{\frac{1}{2}\left(2 \sin ^{2} x+8 \sin x+10\right)}{2 \sin ^{2} x+8 \sin x+8}\)
    \(\Rightarrow f(x)=\frac{1}{2}\left[1+\frac{2}{2 \sin ^{2} x+8 \sin x+8}\right]\)
    \(\Rightarrow f(x)=\frac{1}{2}\left[1+\frac{2}{2(\sin x+2)^{2}}\right]\)
    \(\Rightarrow f(x)=\frac{1}{2}\left[1+\frac{1}{(\sin x+2)^{2}}\right]\)
    Minimum value of \(\frac{1}{(\sin x+2)^{2}}=\frac{1}{9}\) when \(\sin x=1\)
    And maximum value of \(\frac{1}{(\sin x+2)^{2}}=1\) when \(\sin x=-1\)
    So
    \(f(x)_{\min }=\frac{1}{2}\left[1+\frac{1}{9}\right]=\frac{5}{9}\)
    \(f(x)_{\max }=\frac{1}{2}[1+1]=1\)
    So range of \(f(x)\) is \(\left[\frac{5}{9}, 1\right]\)
  • Question 2
    1 / -0

    If statement (P q) (q r) is false, then truth values of statements p,q and r respectively can be

    Solution

    If (P →q) →(q →r) is false then (p →q) must be true and (q →r) must be false.

    Now,

    If P →q is true then P & q both can be true or false :

    If q →r is false then q must be true and r must be false

    So when both condition i.e. P →q true and q → r false satisfy then q is true, r is false and P can be true or false

  • Question 3
    1 / -0

    The greatest value of λ ≥ 0 for which both the equations 2x2 + ( λ − 1)x + 8 = 0 and x2 − 8x + λ + 4 = 0 have real roots is

    Solution

    The given equations are
    2x2 + (λ − 1) x + 8 = 0 ... (1)
    and x2 − 8x + λ + 4 = 0 ... (2)
    These equations have real roots if
    (λ − 1)2 − 4 ⋅2 ⋅ 8 ≥0
    and (− 8)2 − 4 (λ + 4) ≥ 0
    i.e., if λ2 − 2λ − 63 ≥ 0 and − 4 λ ≥ − 48
    i.e., if (λ − 9) (λ + 7) ≥ 0 and λ ≤ 12
    i.e. if λ ≤ − 7 or λ ≥ 9 and λ ≤ 12

    \(\Rightarrow \lambda \in(-\infty,-7] \cup[9,12]\)
    but in question it os given that \(\lambda \geq 0\)
    so \(\lambda \in[9,12]\)
    So greatest value of \(\lambda\) is 12
  • Question 4
    1 / -0
    The value of the limit \(\lim _{x \rightarrow \frac{\pi}{2}}\left[1^{1 / \cos ^{2} x}+2^{1 / \cos ^{2} x}+3^{1 / \cos ^{2} x}+\ldots \ldots \ldots . .+10^{1 / \cos ^{2} x}\right]^{\cos ^{2} x}\) is
    Solution
    Let \(\frac{1}{\cos ^{2} x}=\lambda \geq 1\)
    (as \(\left.0 \leq \cos ^{2} x \leq 1\right)\)
    \(\therefore \lim _{x \rightarrow \frac{\pi}{2}}\left[1^{1 / \cos ^{2} x}+2^{1 / \cos ^{2} x}+3^{1 \cos ^{2} x}+\ldots \ldots \ldots+10^{1 / \cos ^{2} x}\right]^{\cos ^{2} x}\)
    \(=\lim _{\lambda \rightarrow \infty}\left(1^{\lambda}+2^{\lambda}+\ldots+10^{\lambda}\right)^{\frac{1}{\lambda}}\)
    \(=\left(10^{\lambda}\right)^{\frac{1}{\lambda}} \lim _{\lambda \rightarrow \infty}\left[\left(\frac{1}{10}\right)^{\lambda}+\left(\frac{2}{10}\right)^{\lambda}+\ldots+1\right]^{\frac{1}{\lambda}}\)
    \(=10[0+0+\ldots+1]^{0}=10\)
  • Question 5
    1 / -0
    If \(|\vec{a}|=4,|\vec{b}|=4\) and \(|\vec{c}|=5\) such that \(\vec{a} \perp(\vec{b}+\vec{c}) \cdot \vec{b} \perp \overrightarrow{(c}+\vec{a})\) and \(\vec{c} \perp(\vec{a}+\vec{b}),\) then \(|\vec{a}+\vec{b}+\vec{c}|=\)
    Solution
    \(\vec{a} \perp(\vec{b}+\vec{c}), \vec{b} \perp(\vec{c}+\vec{a}), \vec{c} \perp(\vec{a}+\vec{b})\)
    \(\vec{a} \cdot(\vec{b}+\vec{c})=0, \vec{b} \cdot(\vec{c}+\vec{a})=0, \vec{c} \cdot(\vec{a}+\vec{b})=0\)
    \(2(a \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=2 \sum \vec{a} \cdot \vec{b}=0\)
    \(\vec{a}+\vec{b}+\vec{c}^{2}=\sum a^{2}+2 \sum \vec{a} \cdot \vec{b}\)
    \(|\vec{a}+\vec{b}+\vec{c}|^{2}=\sum a^{2}+0=4^{2}+4^{2}+5^{2}=57\)
    \(|\vec{a}+\vec{b}+\vec{c}|=\sqrt{57}\)
  • Question 6
    1 / -0

    Let a1, a2, a3, .... be terms of an A.P.If \(\frac{a_{1}+a_{2}+\ldots+a_{p}}{a_{1}+a_{2}+\ldots a_{q}}=\frac{p^{2}}{q^{2}} p \neq q,\) then \(\frac{a_{6}}{a_{21}}\) equals

    Solution
    \(\frac{a_{1}+a_{2}+\ldots+a_{p}}{a_{1}+a_{2}+\ldots+a_{q}}=\frac{p^{2}}{q^{2}}\)
    \(\Rightarrow \frac{\frac{p}{2}\left[2 a_{1}+(p-1) d\right]}{\frac{q}{2}\left[2 a_{1}+(q-1) d\right]}=\frac{p^{2}}{q^{2}}\)
    \(\Rightarrow \frac{\left(2 a_{1}-d\right)+p d}{\left(2 a_{1}-d\right)+q d}=\frac{p}{q}\)
    \(\Rightarrow\left(2 a_{1}-d\right)(p-q)=0\)
    As p is not equal to \(\Rightarrow \mathrm{a}_{1}=\frac{\mathrm{d}}{2}\)
    \(\mathrm{Now} \frac{\mathrm{a}_{6}}{\mathrm{a}_{21}}=\frac{\mathrm{a}_{1}+5 \mathrm{d}}{\mathrm{a}_{1}+20 \mathrm{d}}\)
    \(=\frac{\frac{d}{2}+5 d}{\frac{d}{2}+20 d}=\frac{11 d}{41 d}\)
    \(=\frac{11}{41}\)
  • Question 7
    1 / -0

    The equation of the bisector of the acute angle between the lines 3x − 4y + 7 = 0 and 12x + 5y − 2 = 0 is

    Solution

  • Question 8
    1 / -0

    The foci of a hyperbola coincide with the foci of the ellipse \(\frac{x^{2}}{25}+\frac{y^{2}}{9}=1\). The equation of the hyperbola if its eccentricity is 2, is

    Solution
    I. Ellipse. \(\frac{x^{2}}{25}+\frac{y^{2}}{9}=1 a^{2}=25 \cdot b^{2}=9\)
    Now \(b^{2}=a^{2}\left(1-e^{2}\right) 9=25\left(1-e^{2}\right) e=\frac{4}{5}\)
    II. Hyperbola ae \(=5\left(\frac{4}{5}\right)=4 .\) Focus \(S\) is at \(S(a e, 0)\) or \(S(4,0)\) Eccentricity \(=e_{1}=2\) Focus is at \(\mathrm{S}\left(\mathrm{ae}_{1}, 0\right)\) or \(\mathrm{S}(2 \mathrm{a}, 0) \ldots(\mathrm{ii})\)
    By assumption (i) \(\&\) (ii) represent the same position. \(\therefore 2 a=4 a=2\)
    Now \(a=2, e_{1}=2 b^{2}=a^{2}\left(e_{1}^{2}-1\right)\)
    \(b^{2}=4(4-1) b^{2}=12\)
    \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\) becomes \(\frac{x^{2}}{4}-\frac{y^{2}}{12}=1\)
  • Question 9
    1 / -0

    If \(z\) and \(\omega\) are two non-zero complex numbers such that \(|z \omega|=1\) and \(\arg (z)-\arg (\omega)=\pi / 2,\) the \(\bar{Z} \omega\) is equal to

    Solution
    \(|\bar{z} w|=|\bar{z}||w|=|z||w|=1\) and
     
    \(\begin{aligned} \arg (\bar{z} w) &=\arg (z)+\arg (w) \\ &=-\arg (z)+\arg (w) \\ &=-[\arg (z)-\arg (w)] \\ &=-\frac{\pi}{2} \end{aligned}\)
    so, modulus of this complex number is 1 and argument is \(-\frac{\pi}{2} \quad\) so complex no. is "- \(-1^{n}\)
  • Question 10
    1 / -0
    A variable chord passing through the fixed point P on the axis of the parabola \(y^{2}=\frac{3}{2}(x-2)\) cuts the parabola at the points \(A \& B\). The co-ordinates
    of the point P such that \(\frac{1}{\mathrm{PA}^{2}}+\frac{1}{\mathrm{PB}^{2}}=\) constant is
    Solution

    \(y^{2}=\frac{3}{2}(x-2) y^{2}=4 \cdot \frac{3}{8} \cdot(x-2)\)

    Hence equation of axis is \(y=0\)

    Let the point P be ( \(h\), 0). Hence equation of the chord passing through \(P(h, 0)\) in parametric form is given by \(y\).
    \(\frac{x-h}{\cos \theta}=\frac{y}{\sin \theta}=r x=h+r \cos \theta, y=r \sin \theta\)
    Solving the chord \& the parabola:
    \(2 r^{2} \sin ^{2} \theta-3 r \cos \theta-3(h-2)=0\)
    \(\therefore \mathrm{r}_{1}+\mathrm{r}_{2}=\frac{3 \mathrm{cos} \theta}{2 \sin ^{2} \theta}, \mathrm{r}_{1} \mathrm{r}_{2}=\frac{-3(\mathrm{h}-2)}{2 \sin ^{2} \theta}\)
    (note that \(\left.r_{1}=P A, r_{2}=P B\right)\)
    \(\therefore \frac{1}{\mathrm{r}_{1}^{2}}+\frac{1}{\mathrm{r}_{2}^{2}}=\frac{\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)^{2}-2 \mathrm{r}_{1} \mathrm{r}_{2}}{\mathrm{r}_{1}^{2} \mathrm{r}_{2}^{2}}=\left(\frac{\mathrm{r}_{1}+\mathrm{r}_{2}}{\mathrm{r}_{1} \mathrm{r}_{2}}\right)^{2}-\frac{2}{\mathrm{r}_{1} \mathrm{r}_{2}}\)
    \(=\frac{\cos ^{2} \theta}{(h-2)^{2}}+\frac{4 \sin ^{2} \theta}{3(h-2)}\)
    Let \(f(\theta)=\frac{\cos ^{2} \theta}{(h-2)^{2}}+\frac{4 \sin ^{2} \theta}{3(h-2)}=\) constant
    \(f^{\prime}(\theta)=0 \forall \theta \in R\)
    \(\left(\frac{-1}{(h-2)^{2}}+\frac{4}{3(h-2)}\right) 2 \sin \theta \cos \theta=0 \forall \theta \in R\)
    \(\left(\frac{-1}{(h-2)^{2}}+\frac{4}{3(h-2)}\right)=0 h=11 / 4\)
    \(P\) is \(\left(\frac{11}{4}, 0\right)\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now