Self Studies

Mathematics Test - 32

Result Self Studies

Mathematics Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(a, b,\) care positive, then \(\sum \tan ^{-1} \sqrt{\frac{a(a+b+c)}{b c}}=\)

    Solution
    \(\operatorname{Let} A=\sqrt{\frac{a(a+b+c)}{b c}}\)
    \(A B C=\frac{a+b+c}{a b c}\)
    \(A+B+C=\sqrt{\frac{a+b+c}{a b c}}(a+b+c)\)
    \(A B=\frac{a+b+c}{c}\)
    \(B C=\frac{a+b+c}{a}\)
    \(\rightarrow \tan ^{-1} A+\tan ^{-1} B+\tan ^{-1} C\)
    \(=\tan ^{-1}\left(\frac{A+B}{1-A B}\right)+\tan ^{-1} C\)
    \(=\tan ^{-1}\left(\frac{A+B}{1-A B}\right)+\tan ^{-1} C\)
    \(\tan ^{-1} \frac{\left(\frac{A+B}{1-A B}+C\right)}{1-\left(\frac{A C+B C}{1-A B}\right)}\)
    \(=\tan ^{-1}\left(\frac{A+B+C-A B C}{1-A B-B C-A C}\right)\)
    \(=\tan ^{-1} \frac{\left(\frac{a+b+c}{a b c}-(a+b+c) \sqrt{\frac{a+b+c}{a b c}}\right)}{1-(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
    \(=\tan ^{-1}(0)\)
    Hence, the correct option is (A)
  • Question 2
    1 / -0

    If tan 45° + cosec 30° = x, then find the value of x

    Solution

    We know that,

    tan 45° = 1

    cosec 30° = 2

    According to the given information,

    x = tan 45° + cosec 30° = 1 + 2 = 3
    Hence, the correct option is (D)

  • Question 3
    1 / -0

    Find the principle value of cos−1−(1/√2)

    Solution
    Principle value of \(\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)
    \(=\cos ^{-1}\left(\cos \left(\pi-\frac{\pi}{4}\right)\right)\)
    \(=\pi-\frac{\pi}{4}\)
    \(=\frac{3 \pi}{4}\)
    Hence, the correct option is (A)
  • Question 4
    1 / -0

    The principal value of \(\tan ^{-1}\left(\cot \frac{3 \pi}{4}\right)\) is :

    Solution
    We have \(\tan ^{-1}\left(\cot \frac{3 \pi}{4}\right)\)
    \(=\tan ^{-1}\left(\cot \left(\frac{\pi}{2}+\frac{\pi}{4}\right)\right)\)
    \(=\tan ^{-1}\left(-\tan \frac{\pi}{4}\right)\)
    \(\tan ^{-1}(-1)=-\frac{\pi}{4}\)
    Hence, the correct option is (C)
  • Question 5
    1 / -0

    The number of triplets (x,y,z), where x,y,z∈[0,2π], satisfying the inequality

    (1+cos4x)(2+cot2y)(4+sin4z)≤12cos2x are

    Solution
    Rearrange the expression as, \(\left(\frac{1+\cos ^{4} x}{\cos ^{2} x}\right)\left(2+\cot ^{2} y\right)(4+\sin 4 z) \leq 12\)
    \(\therefore\left(\cos ^{2} x+\sec ^{2} x\right)\left(2+\cot ^{2} y\right)(4+\sin 4 z) \leq 12 \ldots \ldots \ldots \ldots \ldots .(1)\)
    \(\left(\cos ^{2} x+\sec ^{2} x\right) \geq 2 \ldots \ldots \ldots \ldots \ldots \ldots .(A . M \geq G . M)\)
    \(\left(2+\cot ^{2} y\right) \geq 2 \ldots \ldots \ldots \ldots \ldots \ldots .\left(\cot ^{2} y \geq 0\right)\)
    \((4+\sin 4 z) \geq 3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots(\sin 4 z \geq-1)\)
    \(\therefore\left(\cos ^{2} x+\sec ^{2} x\right)\left(2+\cot ^{2} y\right)(4+\sin 4 z) \geq 12 \ldots \ldots \ldots \ldots \ldots \ldots .(2)\)
    From (1) and (2) it implies that only limiting case is possible. Therefore, \(\cos ^{2} x=\sec ^{2} x=1 \rightarrow x=0\) or \(x=\pi\) or \(x=2 \pi\) gives 3 values.
    and \(\cot ^{2} y=0 \rightarrow x=\frac{\pi}{2}\) or \(x=\frac{3 \pi}{2}\) gives 2 values.
    and \(\sin 4 z=-1 \rightarrow z=\frac{3 \pi}{8}\) or \(z=\frac{7 \pi}{8}\) or \(z=\frac{11 \pi}{8}\) or \(z=\frac{15 \pi}{8}\) gives 4 values.
    \(\therefore\) Total number of triplets is \(3 \times 2 \times 4\) Hence, answer is 24
    Hence, the correct option is (D)
  • Question 6
    1 / -0

    If \(\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}=4^{\circ},\) then

    Solution
    Substituting \(x=\tan A\) \(\tan ^{-1}\left(\frac{\sec A-1}{\tan A}\right)\)
    \(=\tan ^{-1}\left(\frac{1-\cos A}{\sin A}\right)\)
    \(=\tan ^{-1}\left(\tan \left(\frac{A}{2}\right)\right)\)
    \(4^{0}=\frac{A}{2}\)
    \(\Rightarrow A=8^{0}\)
    \(\tan ^{-1}(x)=8^{0}\)
    \(x=\tan \left(8^{0}\right)\)
    Hence, the correct option is (D)
  • Question 7
    1 / -0

    Number of solutions of the equation \(\cot ^{-1}\left(\frac{x^{2}-1}{2 x}\right)+\tan ^{-1}\left(\frac{2 x}{x^{2}-1}\right)=\frac{2 \pi}{3}\) are

    Solution
    Case \(\mathrm{I}: \frac{x^{2}-1}{2 x}>0\)
    \(\Rightarrow x \in(-1,0) \cup(1, \infty)\)
    Given \(\Rightarrow 2 \tan ^{-1}\left(\frac{2 x}{x^{2}-1}\right)=\frac{2 \pi}{3}\)
    \(\frac{2 x}{x^{2}-1}=\sqrt{3} \Rightarrow x=-\frac{1}{\sqrt{3}}, \sqrt{3}\)
    Case II: \(\frac{x^{2}-1}{2 x}<0\)
    \(\Rightarrow x \in(-\infty,-1) \cup(0,1)\)
    Given \(\Rightarrow \pi+2 t a n^{-1}\left(\frac{2 x}{x^{2}-1}\right)=-\frac{1}{\sqrt{3}} \Rightarrow x=\pm 2-\sqrt{3}\)
    \(\therefore\) four solutions
    Hence, the correct option is (A)
  • Question 8
    1 / -0

    If \(\cos ^{-1} \sqrt{p}+\cos ^{-1} \sqrt{1-p}+\cos ^{-1} \sqrt{1-q}=\frac{3 \pi}{4},\) then the value of \(q\) is

    Solution
    Consider \(p=\frac{1}{2}\)
    Therefore the above expression reduces to \(\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\cos ^{-1}(\sqrt{1-q})\)
    \(=\frac{\pi}{4}+\frac{\pi}{4}+\cos ^{-1}(\sqrt{1-q})\)
    \(=\frac{2 \pi}{4}+\cos ^{-1}(\sqrt{1-q})\)
    \(=\frac{3 \pi}{4}\)
    Therefore \(\cos ^{-1}(\sqrt{1-q})=\frac{\pi}{4}\)
    \(\Rightarrow \sqrt{1-q}=\frac{1}{\sqrt{2}}\)
    \(\Rightarrow 2-2 q=1\)
    \(\Rightarrow q=\frac{1}{2}\)
    Hence, the correct option is (C)
  • Question 9
    1 / -0

    \(\mathrm{f} \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=K, \forall x \in[-1,0],\) then the value of \(\mathrm{K}\) is

    Solution
    Substituting \(\boldsymbol{x}=\tan A\)
    Hence \(\cos ^{-1}\left(\frac{1-\tan ^{2} A}{1+\tan ^{2} A}\right)+\sin ^{-1}\left(\frac{2 \tan A}{1+\tan ^{2} A}\right)\)
    \(=\cos ^{-1}(\cos 2 A)+\sin ^{-1}(\sin 2 A)\)
    Now, \(x \in[-1,0]\)
    Hence \(A \in\left[\frac{-\pi}{4}, 0\right]\)
    Therefore A lies in the fourth quadrant. Hence \(\cos ^{-1}(\cos 2 A)\)
    \(=2 A\)
    And \(\sin ^{-1}(\sin 2 A)\)
    \(=-2 A\)
    Therefore \(K=2 A-2 A\)
    \(=0\)
    Hence, the correct option is (C)
  • Question 10
    1 / -0

    \(\lim _{x \rightarrow 1}\left[\sec \left(\frac{\pi x}{2}\right) \log x\right]\) is:

    Solution
    \(\lim _{x \rightarrow 1}\left[\sec \left(\frac{\pi x}{2}\right) \log x\right]\)
    \(=\lim _{x \rightarrow 1} \frac{\log x}{\cos \left(\frac{\pi x}{2}\right)}\)
    It is of the form \(\frac{0}{0},\) So applying L-Hospital's rule, \(=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{-\frac{\pi}{2} \sin \left(\frac{\pi x}{2}\right)}\)
    \(=-\frac{2}{\pi}\)
    Hence, the correct option is (A)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now