Self Studies

Mathematics Test - 37

Result Self Studies

Mathematics Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If 9 A.M.s and 9 H.M.s are inserted between 2 and 3 and A be any A.M. and H be the corresponding H.M.,then H(5−A)=

    Solution
    Let A be the \(k^{t h}\) A.M., then \(\mathrm{H}\) will be the \(k^{t h} \mathrm{H.M}\)., \(\mathrm{Now}, A=2+k d=2+k\left[\frac{3-2}{10}\right]=\frac{20+k}{10}\)
    \(\frac{1}{H}=\frac{1}{2}+k d^{\prime}=\frac{1}{2}+k\left[\frac{\frac{1}{3}-\frac{1}{2}}{10}\right]=\frac{30-k}{60}\)
    \(\therefore A+\frac{6}{H}=5 \Longrightarrow H(5-A)=6\)
    Hence, option 'B' is correct.
  • Question 2
    1 / -0

    The digits of a three-digit number form a G.P. If 400 is subtracted from it, then we get another three-digit number whose digits form an arithmetic series. What is the sum of these two numbers?

    Solution
    Let the digits of a three-digit number be \(x, y\) and \(z\) and the number be \(100 z+10 y+x,\) where \(x, y, z\) are in G.P. \(\therefore y^{2}=x z\)
    \(\Rightarrow x z\) must be a square number If \(x z=4,\) then \(y=2 \Rightarrow 421\) is the number, but \(421-400=21\) which is not a three digit number. \(\therefore x z=9,\) i.e., \(x=1, z=9\)
    \(\therefore y=3,\) so that \(x, y, z\) are in \(A . P .\) \(\therefore\) The number is \(931 .\)
    The other number will be \(531,\) so that 1,3 and 5 are in \(A\). P. Their sum \(=931+531=1462\)
  • Question 3
    1 / -0

    The sum of the infinite series \(1+\left(1+\frac{1}{2}\right)\left(\frac{1}{3}\right)+\left(1+\frac{1}{2}+\frac{1}{2^{2}}\right)\left(\frac{1}{3^{2}}\right)+\ldots \ldots \infty\)

    Solution
    Let, \(S_{\infty}=1+\left(1+\frac{1}{2}\right)\left(\frac{1}{3}\right)+\left(1+\frac{1}{2}+\frac{1}{2^{2}}\right)\left(\frac{1}{3^{2}}\right)+\ldots \ldots \infty\)
    Now, \(t_{r}=\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{r-1}}\right)\left(\frac{1}{3^{r-1}}\right)=\left(\frac{1-(1 / 2)^{r}}{1-(1 / 2)}\right)\left(\frac{1}{3^{r-1}}\right)\)
    -.. Sum of G.P series ]
    \(\Rightarrow t_{r}=6\left(\frac{1}{3^{r}}-\frac{1}{6^{r}}\right)\)
    \(S_{\infty}=\sum_{r=1}^{\infty} t_{r}=6 \sum_{r=1}^{\infty}\left(\frac{1}{3^{r}}-\frac{1}{6^{r}}\right)\)
    \(\Rightarrow S_{\infty}=6\left(\left[\frac{1 / 3}{1-(1 / 3)}-\frac{1 / 6}{1-(1 / 6)}\right]\right) \quad \ldots .\) [Sum of Infinite G.P series \(]\)
    \(\Rightarrow S_{\infty}=\frac{9}{5}\)
  • Question 4
    1 / -0

    The least value of 1 / 2 + 2 / 3 cosec2θ + 3 /8 sec2θ is

    Solution
    \(\frac{1}{2}+\frac{2}{3} \operatorname{cosec}^{2} \theta+\frac{3}{8} \sec ^{2} \theta\)
    \(=\frac{1}{2}+\frac{2}{3}+\frac{2}{3} \cot ^{2} \theta+\frac{3}{8}+\frac{3}{8} \tan ^{2} \theta\)
    \(=\frac{37}{24}+\frac{2}{3} \cot ^{2} \theta+\frac{3}{8} \tan ^{2} \theta\)
    Now, \(A M \geq G M\) \(\frac{\frac{2}{3} \cot ^{2} \theta+\frac{3}{8} \tan ^{2} \theta}{2} \geq \sqrt{\frac{2}{3} \cot ^{2} \theta \times \frac{3}{8} \tan ^{2} \theta}\)
    \(\frac{2}{3} \cot ^{2} \theta+\frac{3}{8} \tan ^{2} \theta \geq 1\)
    Therefore, \(\frac{37}{24}+\frac{2}{3} \cot ^{2} \theta+\frac{3}{8} \tan ^{2} \theta \geq \frac{37}{24}+1=\frac{61}{24}\)
  • Question 5
    1 / -0
    If \(a_{1}, a_{2}, a_{3}, a_{4}\) and \(b\) are real numbers such that \(\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right) b^{2}-2\left(a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}\right) b+\left(a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right) \leq 0\) then \(a_{1}, a_{2}, a_{3}, a_{4}\) are
    the terms of a/an
    Solution
    \(\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{3}\right) b^{2}-2\left(a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}\right) b+\left(a_{2}^{2}+a_{3}^{3}+a_{4}^{2}\right) \leq 0\)
    where, \(a_{1}, a_{2}, a_{3}, a_{4}, b \in R\)
    or, \(\left(a_{1}^{2} b^{2}-2 a_{1} a_{2} b+a_{2}^{2}\right)+\left(a_{2}^{2} b^{2}-2 a_{2} a_{3} b+a_{3}^{2}\right)+\left(a_{3}^{2} b^{2}-2 a_{3} a_{4} b+a_{4}^{2}\right) \leq 0\)
    or, \(\left(a_{1} b-a_{2}\right)^{2}+\left(a_{2} b-a_{3}\right)^{2}+\left(a_{3} b-a_{4}\right)^{2} \leq 0\)
    since all individual terms are positive so, they all are equal to zero separately
    or, \(\left(a_{1} b-a_{2}\right)^{2}=0\) or \(\left(a_{2} b-a_{3}\right)^{2}=0\) or \(\left(a_{3} b-a_{4}\right)^{2}=0\)
    or, \(\left(a_{1} b-a_{2}\right)=0\) or \(\left(a_{2} b-a_{3}\right)=0\) or \(\left(a_{3} b-a_{4}\right)=0\)
    or, \(b=\frac{a_{2}}{a_{1}}\) or \(b=\frac{a_{3}}{a_{2}}\) or \(b=\frac{a_{4}}{a_{3}}\)
    or, \(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{4}}{a_{3}}=b\)
    \(\mathrm{So}, a_{1}, a_{2}, a_{3}\) and \(a_{4}\) are in G.P. Hence, \(A\) is the correct option.
  • Question 6
    1 / -0

    The equation of the locus of the points equidistant from the points A(−2,3) and B(6,−5) is

    Solution
    Let an arbitrary point be \(P(x, y)\), Then it is given that \(P A=P B\)
    or \(P A^{2}=P B^{2}\)
    \((x+2)^{2}+(y-3)^{2}=(x-6)^{2}+(y+5)^{2}\)
    \((x+2)^{2}-(x-6)^{2}=(y+5)^{2}-(y-3)^{2}\)
    \((2 x-4)(8)=(2 y+2)(8)\)
    \(2 x-4=2 y+2\)
    \(x-2=y+1\)
    \(x=y+3\)
    or
    \(x-y=3\)
  • Question 7
    1 / -0

    The distance between the points (2,π/2),(5,tan−14/3) is

    Solution
    Converting from polar to rectangular form. \(A \equiv\left(2, \frac{\pi}{2}\right)\)
    Here, \(r=2\) and \(\theta_{1}=\frac{\pi}{2}\)
    Hence, \(x_{1}=r \cos \theta_{1}\) and \(y_{1}=r \sin \theta_{1}\)
    \(\therefore x_{1}=0\) and \(y_{1}=2\)
    so, \(\left(2, \frac{\pi}{2}\right) \equiv(0,2)\)
    \(B \equiv\left(5, \tan ^{-1} \frac{4}{3}\right)\)
    Here, \(r=5\) and \(\tan \theta_{2}=\frac{4}{3}\)
    \(\therefore \sin \theta_{2}=\frac{4}{5}\) and \(\cos \theta_{2}=\frac{3}{5}\)
    Hence, \(x_{2}=r \cos \theta_{2}\) and \(y_{2}=r \sin \theta_{2}\)
    \(\therefore x_{2}=3\) and \(y_{2}=4\)
    So, \(\left(5, \tan ^{-1} \frac{4}{3}\right) \equiv(3,4)\)
    By distance formula, \(A B=\sqrt{(3-0)^{2}+(4-2)^{2}}\)
    \(A B=\sqrt{13}\)
  • Question 8
    1 / -0

    The distance between (a,π/2) and (3a,π/6) is

    Solution
    Distance between the points in polar form is \(d=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)}\)
    \(\Rightarrow d=\sqrt{a^{2}+9 a^{2}-6 a^{2} \cos \frac{\pi}{3}}\)
    \(\Rightarrow d=a \sqrt{7}\)
    Alternate Method:
    Converting polar coordinates \(\left(a, \frac{\pi}{2}\right)\) to cartesian form \(x_{1}=a \cos \frac{\pi}{2}\) and \(y_{1}=a \sin \frac{\pi}{2}\)
    So, the cartesian form of \(\left(a, \frac{\pi}{2}\right)\) is \((0, a)\) Converting polar coordinates \(\left(3 a, \frac{\pi}{6}\right)\) to cartesian form \(x_{2}=3 a \cos \frac{\pi}{6}\) and \(y_{2}=3 a \sin \frac{\pi}{6}\)
    \(x_{2}=\frac{3 a \sqrt{3}}{2}, y_{2}=\frac{3 a}{2}\)
    So, the cartesian form of \(\left(3 a, \frac{\pi}{6}\right)\) is \(\left(\frac{3 a \sqrt{3}}{2}, \frac{3 a}{2}\right)\) Distance \(d=\sqrt{\frac{27 a^{2}}{4}+\frac{a^{2}}{4}}\)
    \(\Rightarrow d=\sqrt{7 a^{2}}\)
    \(\Rightarrow d=a \sqrt{7}\)
  • Question 9
    1 / -0

    The polar equation of xcos(α)+ysin(α)=p is

    Solution
    \(x=r \cos \theta\) and \(y=r \sin \theta\) where \(r=\sqrt{x^{2}+y^{2}}\)
    Hence
    \(x \cos \alpha+y \sin \alpha=p\)
    \(r \cos \theta \cos \alpha+r \sin \theta \sin \alpha=p\)
    \(r(\cos \theta \cos \alpha+\sin \theta \sin \alpha)=p\)
    \(r \cos (\theta-\alpha)=p\)
    This is the required polar equation of the given line.
  • Question 10
    1 / -0

    The quadratic equation whose roots are the x and y intercepts of the line passing through (1,1) and making a triangle of area A with the axes, may be

    Solution
    Let the roots be \(\alpha, \beta\) Then the equation of the line will be \(\frac{x}{\alpha}+\frac{y}{\beta}=1\) where \(\alpha\) is the \(x\) intercept and \(\beta\) is the \(y\) intercept. Also, the area of the right triangle formed by the line and the coordinate axes is \(\frac{\alpha \cdot \beta}{2}=A\)
    Or \(\alpha \cdot \beta=2 A \ldots(i)\)
    since the line passes through ( 1,1 ) hence \(\frac{1}{\alpha}+\frac{1}{\beta}=1\)
    \(\Rightarrow \frac{\alpha+\beta}{\alpha \cdot \beta}=1\)
    \(\Rightarrow \alpha+\beta=\alpha \cdot \beta\)
    \(\Rightarrow \alpha+\beta=2 A \ldots\) from \(\mathrm{i}\)
    Hence, sum of roots is \(=\alpha+\beta=2 A\)
    And, Product of roots \(\alpha \beta=2 A\) Thus the equation with the roots \(\alpha\) and \(\beta\) is \((x-\alpha)(x-\beta)=0\)
    \(\Rightarrow x^{2}-(\alpha+\beta) x+\alpha \beta=0\)
    \(\Rightarrow x^{2}-2 A x+2 A=0\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now