Self Studies
Selfstudy
Selfstudy

Mathematics Test - 2

Result Self Studies

Mathematics Test - 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let f(x) = [x], then f′(1) = ?

    Solution

    Given: f(x) = [x]

     

    \(\operatorname{Rf}^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}\)

    \(=\lim _{h \rightarrow 0} \frac{[1+h]-[1]}{h}=\lim _{h \rightarrow 0} \frac{(1-1)}{h}=0\)

    \(L f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}=\lim _{h \rightarrow 0} \frac{[1-h]-[1]}{-h}\)

    \(=\lim _{h \rightarrow 0} \frac{0-1}{-h}=\infty\)

    \(R f^{\prime}(1)^{1} L f^{\prime}(1) .\)

    So, \(f^{\prime}(1)\) does not exist.

    Hence, the correct option is (D).

     

  • Question 2
    1 / -0

    Let f(x) = x3/2, then f′(0) =

    Solution

  • Question 3
    1 / -0

    If f(x) = | x |, then f′(2) =

    Solution

  • Question 4
    1 / -0

    Let f(x + y) = f(x)f(y), for all x, y ∈ R. If f'(0) = 2 and f(4) = 4, then f'(4) is equal to-

    Solution

    We have \(f(x+y)=f(x)\) f \((y)\), for all \(x, y\) Î \(R\). 

    Putting \(x=y=0\), we get

    f(0)=f(0)f(0)

    Now f'(0)=2 (Given)

    We know,

    \(\lim _{x \rightarrow 0} \frac{f(0+h)-f(0)}{h}=2\)

    \(\Rightarrow \lim _{h \rightarrow 0} \frac{f(0) f(h)-f(0)}{h}=2\)

    \(\Rightarrow \lim _{h\rightarrow 0} \frac{f(h)-1^{n}}{h}=2\) [using \(\left.f(0)=1\right]\)

    Again, \(f(4)=\frac{f(4+h)-f(4)}{h}\)

    \(f'(x)=\lim _{1 \rightarrow 0} \frac{((4)+(h)-f(4)}{h}\)

    \(=\left(\lim _{n} \frac{f(h)-1}{h}\right) f(4)=2 f(4)\) 

    \(\therefore\ f'(x)= 2×4=8\) (since f(4)=4)

  • Question 5
    1 / -0

    Solution

    Hence , options (B ) is the correct answer.

  • Question 6
    1 / -0

    Solution

    Here the correct option is (C). 

  • Question 7
    1 / -0

    Solution

  • Question 8
    1 / -0

    Solution

  • Question 9
    1 / -0

    Solution

  • Question 10
    1 / -0

    Solution

  • Question 11
    1 / -0

    Solution

  • Question 12
    1 / -0

    Solution

  • Question 13
    1 / -0

    If A, B and C are subsets of a given set, then which one of the following relations is not correct?

    Solution

    We know that, If A, B and C are subsets of a set X. Then,

    I. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

    II. A ∪ A = A, A ∩ (A ∪ B) = A, A ∪ (A ∩ B) = A and A ∩ A = A

    III. (A ∩ B) ∪ C = (A ∩ C) ∪ (B ∩ C)

    IV. (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

    Now, checking the options,

    (A): A ∪ (A ∩ B)

    = (A ∪ A) ∩ (A ∪ B)    ---- (Using property I)

    = A ∩ (A ∪ B)

    = A    ---- (Using property II)

    So, option (A) is not correct.

    (B): A ∩ (A ∪ B)

    = (A ∩ A) ∪ (A ∩ B)    ---- (Using property I)

    = A ∪ (A ∩ B)

    = A    ---- (Using property II)

    So, option (B) is correct.

    (C): (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)       ---- (Using property III)

    So, option (C) is correct.

    (D): (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)       ---- (Using property IV)

    So, option (D) is correct.

  • Question 14
    1 / -0

    A parallelepiped is formed by planes drawn through the points P(6,8,10) and Q(3,4,8) parallel to the coordinate planes. Find the length of edges and diagonals of the parallelepiped.

     

    Solution

    \(\mathrm{P}=(6,8,10)\)

    \(\mathrm{Q}=(3,4,8)\)

    \(\mathrm{P}^{1}=\mathrm{x}=6 \quad \mathrm{P}_{1}^{1} \mathrm{x}=3\)

    \(\mathrm{P}^{2}=\mathrm{y}=8 \quad \mathrm{P}_{2}^{1} \mathrm{y}=4\)

    \(\mathrm{P}^{3}=\mathrm{z}=10 \quad \mathrm{P}_{3}^{1}=\mathrm{z}=8\)

    \(\mathrm{S} 0\)

    \(\mathrm{I}=6-3=3\)

    \(\mathrm{b}=8-4=4\)

    \(\mathrm{h}=10-8=2\)

    diagonal \(=\sqrt{1^{2}+\mathrm{b}^{2}+\mathrm{b}^{2}}\)

    \(=\sqrt{3^{2}+4^{2}+2^{2}}\)

    \(=\sqrt{9+16+4}\)

    \(=\sqrt{29}\)

  • Question 15
    1 / -0

    What is the value of \(\lim _{x \rightarrow 0} \frac{\sin x^{\circ}}{\tan 3 x^{\circ}}\) ?

    Solution

    We know that,

    \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\)    ---- (1)

    and \(\lim _{x \rightarrow 0} \frac{\tan x}{x}=1\)    ---- (2)

    We have to find the value of \(\lim _{x \rightarrow 0} \frac{\sin x^{\circ}}{\tan 3 x^{\circ}}\).

    We also know that \(180^{\circ}=\pi\) radian

    So, if \( 1^{\circ}=\frac{\pi}{360}\)

    \( \therefore x^{\circ}=\frac{\pi x}{180}\)

    Therefore, the given expression will become,

    \(\lim _{x \rightarrow 0} \frac{\sin x^{\circ}}{\tan 3 x^{\circ}}=\lim _{x \rightarrow 0} \frac{\sin \frac{\pi x}{180}}{\tan \frac{3 \pi x}{180}}\)

    \(=\lim _{x \rightarrow 0} \frac{\frac{\sin \frac{\pi x}{180}}{\frac{\pi x}{180}} \times \frac{\pi x}{180}}{\frac{\tan \frac{3 \pi x}{180}}{\frac{3 \pi x}{18}} \times \frac{3 \pi x}{180}}\)

    \(=\lim _{x \rightarrow 0} \frac{\frac{\pi x}{180}}{\frac{3 \pi x}{180}}\)    [From equation (1) and (2)]

    \(=\frac{1}{3}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now