Let $$p$$,$$q$$ and $$r$$ be the sizes of markets P,Q,R respectively.
Given, $$q\ =\ \left(1-\dfrac{\left(33\ \dfrac{1}{3}\right)}{100}\right)p\ =\dfrac{2}{3}p\ =>\ p\ =\ \dfrac{3}{2}q\ $$ -----(1)
Also, $$r = (1+ \dfrac{12.5}{100})(q) = \dfrac{9}{8} q \Rightarrow r = \dfrac{9}{8}q$$ -----(2)
Let $$p'$$,$$q'$$ and $$r'$$ be the sizes of markets P,Q,R the next year respectively.
Given, $$p' = (1+\dfrac{25}{100})(p) = \dfrac{5}{4} p = \dfrac{5}{4} \times \dfrac{3}{2} q = \dfrac{15}{8} q $$
$$q' = (1+\dfrac{50}{100})(q) = \dfrac{3}{2} q $$
$$r' = (1+ \dfrac{60}{100})(r) = \dfrac{8}{5} r = \dfrac{8}{5} \times \dfrac{9}{8} q = \dfrac{9}{5} q $$
Initial size of the company = $$(\dfrac{40}{100} \times \dfrac{3}{2} q)+(\dfrac{50}{100} \times q)+(\dfrac{80}{100} \times \dfrac{9}{8} q)$$
$$ = (\dfrac{3}{5} q) + (\dfrac{1}{2} q) + (\dfrac{9}{10} q) = \dfrac{20}{10} q $$ = $$2q$$
New size of the company = $$ (\dfrac{40}{100} \times \dfrac{15}{8} q) + (\dfrac{50}{100} \times \dfrac{3}{2} q) + (\dfrac{80}{100} \times \dfrac{9}{5} q) $$
$$ = (\dfrac{3}{4} q) + (\dfrac{3}{4} q) + (\dfrac{36}{25} q) $$
$$ = \dfrac{294}{100} q $$ = $$2.94q$$
So, overall growth percent of the company = $$\dfrac{\text{size of new company - size of old company}}{\text{size of old company}} \times 100 $$
=$$\dfrac{\left(2.94\ q-2\ q\right)}{2\ q}\times\ 100$$ = 47%