Self Studies

Averages Test - 1

Result Self Studies

Averages Test - 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    The average of a batsman after 25 innings was 56 runs per innings. If after the 26th inning his average increased by 2 runs, then what was his score in the 26th inning? 

    Solution

    Normal process:
    Runs in 26th inning = Runs total after 26 innings – Runs total after 25 innings
    = 26 X 58 – 25 X 56

    For Easy calculation use:

    = (56 + 2) X 26 – 56 X 25 )
    = 2 X 26 + (56 X 26 – 56 X 25)
    = 52 + 56 = 108

    Since the average increases by 2 runs per innings, it is equivalent to 2 runs being added to each score in the first 25 innings. Now, since these runs can only be added by the runs scored in the 26th inning, the score in the 26th inning must be 25 X 2 = 50 runs higher than the average after 26 innings (i.e. new average = 58).

    Hence, runs scored in 26th inning:
    = New Average + Old innings X Change in average

    = 58 + 25 X 2
    = 108 

  • Question 2
    3 / -1

    There are 7 members in a family whose average age is 25 years. Ram who is 12 years old is the second youngest in the family. Find the average age of the family in years just before Ram was born?

    Solution

    In order to find the average age of the family before Ram was born, we need to know the age of the youngest member of the family. 
    Since, we do not know the age of the youngest member, we can not calculate the total age of the family before Ram was born.
    Hence, we can not calculate the answer with the given conditions.

    Thus, D is the right choice.

  • Question 3
    3 / -1

    The average weight of a class of 10 students is increased by 2 kg when one student of 30kg left and another student joined. After a few months, this new student left and another student joined whose weight was 10 less than the student who left now. What is the difference between the final and initial averages?

    Solution

    Change in total weight of 10 students = difference in weight of the student who joined and the student

    => weigth of first student who left = 30 + (10×2) = 50

    weight of the student who joined last = 50 – 10 = 40...
    Thus change in average weight = (40 – 30)/10 = 1...
     

  • Question 4
    3 / -1

    The average of 15 numbers is 18. If each number is multiplied by 9, then the average of the new set of numbers is:

    Solution

    When we multiply each number by 9, the average would also get multiplied by 9.

    Hence, the new average = 18 X 9 = 162.

  • Question 5
    3 / -1

    The average number of runs scored by Virat Kohli in four matches is 48. In the fifth match, Kohli scores some runs such that his average now becomes 60. In the 6th innings he scores 12 runs more than his fifth innings and now the average of his last five innings becomes 78. How many runs did he score in his first innings? (He does not remain not out in any of the innings)

    Solution

    Runs scored by Kohli in first 4 innings = 48*4 = 192
    Average of 5 innings is 60, so total runs scored after 5 innings = 60*5 = 300
    Hence runs scored by Kohli in fifth inning = 300 – 192 = 108
    It is given that in 6th innings he scores 12 runs more than this, so he must score 120 in the sixth inning. Hence total runs scored in 6 innings = 300+120 = 420
    Now average of last five innings is 78, so runs scored in last innings = 390
    Hence runs scored in first inning = 420 – 390 = 30.

  • Question 6
    3 / -1

    If a – b : b – c : c – d = 1 : 2 : 3, then what is the ratio of (a + d) : c?

    Solution

    Let a – b = x, b – c = 2x and c – d = 3x
    Thus,
    c = 3x + d
    b = 2x + c = 5x + d
    a = x + b = 6x + d
    Hence,
    (a + d )/ c =  (6x + d + d) / (3x + d) =  2/1

  • Question 7
    3 / -1

    The average marks of a group of 20 students on a test is reduced by 4 when the topper who scored 90 marks is replaced by a new student. How many marks did the new student have? 

    Solution

    Let initial average be x.
    Then the initial total is 20x and the New average will be (x – 4),

    The new total will be:
    20(x – 4) = 20x – 80.

    The reduction of 80 is created by the replacement. Hence, the new student has 80 marks less than the student he replaces. Hence, he must have scored 10 marks.

    Short Cut:
    The replacement has the effect of reducing the average marks for each of the 20 students by 4. Hence, the replacement must be 20 X 4 = 80 marks below the original.

    Hence, answer = 10 marks

  • Question 8
    3 / -1

    The average of the first ten composite numbers is 

    Solution

    The first ten composite numbers are: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18. 

    Required average:

    = (4 + 6 + 8 + 9 + 10 + 12 + 14 + 15 + 16 + 18) / 10
    = 112 / 10
    = 11.2

  • Question 9
    3 / -1

    The average weight of 3 boys Ross, Joey and Chandler is 74 kg. Another boy David joins the group and the average now becomes 70 kg. If another boy Eric, whose weight is 3 kg more than that of David, replaces Ross then the average weight of Joey, Chandler, David and Eric becomes 75 kg. The weight of Ross is:

    Solution

    David's Weight = (4 x 70) – (3 x 74) = 280 – 222 = 58
    Eric’s weight = 58 + 3 = 61

    Now, we know that:
    Ross + Joey + Chandler + David = 4 x 70 = 280
    Joey + Chandler + David + Eric = 75 x 4 = 300.

    Hence, Ross’s weight is 20 kg less than Eric’s weight. Ross = 61 - 20 = 41 kg

  • Question 10
    3 / -1

    The mean temperature of Monday to Wednesday was 35 °C and of Tuesday to Thursday was 30 °C. If the temperature on Thursday was 1/2 that of Monday, the temperature on Thursday was ______ .

    Solution

    Mon + Tue + Wed = 35*3 = 105  ---------(1)
    Tue + Wed + Thu = 30*3 = 90  -------------(2)
    Thu = (1/2) Mon  ------------(3)

    Eqn (1)-(2):
    Mon-Thu = 15 ------------(4)

    ⇒ Mon - (1/2) Mon = 15
    ⇒ (1/2) Mon = 15
    ⇒ Mon =30
    ⇒ Thu = 30/2=15

  • Question 11
    3 / -1

    The average age of a family of 5 members is 20 years. If the age of the youngest member is 10 years, what was the average age of the family at the birth of the youngest member?

    Solution

    At present the total age of the family = 5 × 20 =100
    The total age of the family at the time of the birth of the youngest member,
    = 100 - 10 - (10 × 4)
    = 50
    Therefore, average age of the family at the time of birth of the youngest member,
    = 50/4 =12.5

  • Question 12
    3 / -1

    The average weight of 10 men is decreased by 2 kg when one of them weighing 140 kg is replaced by another person. Find the weight of the new person.

    Solution

    Shortcut:
    The decrease in weight would be 20kgs (10people’s average weight drops by 2 kgs). Hence, the new person’s weight = 140 - 20 = 120.

    Detailed Solution:

    Let weight of 9 men =x.
    Weight of new men =y

    According to the question:

    ((x+140)/10) ​− 2 = (x+y​)/10
    y = 120

  • Question 13
    3 / -1

    The average age of a group of men is increased by 6 years when a person aged 26 years is replaced by a new person of aged 56 years. How many men are there in the group?

    Solution

    When a person aged 26 years, is replaced by a person aged 56 years, the total age of the group goes up by 30 years.

    Since this leads to an increase in the average by 6 years, it means that there are 30 / 6 = 5 persons in the group.

  • Question 14
    3 / -1

    The average weight of a class is 54 kg. A student, whose weight is 145 kg, joined the class and the average weight of the class now becomes a prime number less than 72. Find the total number of students in the class now.

    Solution

    Let the original number of students in the class be N.
    Total weight of the class = 54N
    New total weight of the class = 54N + 145
    New average weight of the class = (54N + 145)/(N+1) = (54N + 54)/(N+1) + 91/(N+1) = 54 + 91/(N+1).
    Since the new average is an integer, (N+1) should be a factor of 91.
    If N+1 = 7, the new average becomes 54 + 91/7 = 54 + 13 = 67
    and if N+1 = 13, then the new average becomes 54 + 91/13 = 54 + 7 = 61
    Both 67 and 61 are prime numbers less than 72. So, we cannot uniquely determine the number of students in the class.

  • Question 15
    3 / -1

    Consider a class of 40 students whose average weight is 40 kgs. m new students join this class whose average weight is n kgs. If it is known that m + n = 50, what is the maximum possible average weight of the class now?

    Solution

    If the overall average weight has to increase after the new people are added, the average weight of the new entrants has to be higher than 40.
    So, n > 40
    Consequently, m has to be < 10 (as n + m = 50)
    Working with the “differences"? approach, we know that the total additional weight added by “m"? students would be (n - 40) each, above the already existing average of 40. m(n - 40) is the total extra additional weight added, which is shared amongst 40 + m students.
    So, m * (n−40)(m+40)(n−40)(m+40) has to be maximum for the overall average to be maximum.

    At this point, use the trial and error approach (or else, go with the answer options) to arrive at the answer.

    The maximum average occurs when m = 5, and n = 45

    And the average is 40 + (45 – 40) * 545545 = 40 + 5959 = 40.56 kgs

    The question is "what is the maximum possible average weight of the class now?"

    Hence, the answer is "40.56 kgs".

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now