Self Studies
Selfstudy
Selfstudy

Real Numbers Test - 32

Result Self Studies

Real Numbers Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\dfrac { 317 } { 3125 }$$  represents ______.
    Solution
    If the denominator can be in the powers of either $$2$$ or $$5$$ or both, then it will be a terminating decimal, otherwise non-terminating.
    Now, the denominator $$3125=5^5$$, i.e. is in the form $$2^m\times5^n$$; where $$n,m$$ are non-negative.
    Hence, the rational number is terminating.
    Therefore, $$\dfrac{317}{3125} $$represents a terminating decimal.
  • Question 2
    1 / -0
    The HCF of $$420$$ and $$130$$ is
  • Question 3
    1 / -0
    Find the H.C.F. of :
    Solution

    $${\textbf{Step  - 1: Solving A}}$$

                       $${\text{Prime factorizing 8 and 40,}}$$

                       $$ \Rightarrow {\text{ 8  =  2 }} \times {\text{ 2 }} \times {\text{ 2}}$$

                       $$ \Rightarrow {\text{ 40  =  2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 5}}$$

                       $${\text{Multiplying common prime factors to get HCF, }}$$

                       $${\text{H}}{\text{.C}}{\text{.F  =  2 }} \times {\text{ 2 }} \times {\text{ 2  =  8}}$$

    $${\textbf{Step  - 2: Solving B}}$$

                       $${\text{Prime factorizing 15 and 25,}}$$

                       $$ \Rightarrow {\text{ 15  =  3 }} \times {\text{ 5}}$$

                       $$ \Rightarrow {\text{ 25  =  5 }} \times {\text{ 5}}$$

                       $${\text{Multiplying common prime factors to get HCF, }}$$

                       $${\text{H}}{\text{.C}}{\text{.F  =  5}}$$

    $${\textbf{Step  - 3: Solving C}}$$

                        $${\text{Prime factorizing 16 and 60,}}$$

                        $$ \Rightarrow {\text{ 16  =  2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2}}$$

                       $$ \Rightarrow {\text{ 60  =  2 }} \times {\text{ 2 }} \times {\text{ 3 }} \times {\text{ 5}}$$

                       $${\text{Multiplying common prime factors to get HCF, }}$$

                       $${\text{H}}{\text{.C}}{\text{.F  =  2 }} \times {\text{ 2  =  4}}$$

    $${\textbf{Step  - 4: Solving D}}$$

                       $${\text{Prime factorizing 14 and 35,}}$$

                       $$ \Rightarrow {\text{ 14  =  2 }} \times {\text{ 7}}$$

                       $$ \Rightarrow {\text{ 35  =  5 }} \times {\text{ 7}}$$

                       $${\text{Multiplying common prime factors to get HCF, }}$$

                       $${\text{H}}{\text{.C}}{\text{.F  =  7}}$$

    $${\textbf{Step  - 5: Solving E}}$$

                       $${\text{Prime factorizing 15, 25 and 60,}}$$

                       $$ \Rightarrow {\text{ 15  =  3 }} \times {\text{ 5}}$$

                       $$ \Rightarrow {\text{ 25  =  }}5{\text{ }} \times {\text{ 5}}$$

                       $$ \Rightarrow {\text{ 60  =  2 }} \times {\text{ 2 }} \times {\text{ 3 }} \times {\text{ 5}}$$

                       $${\text{Multiplying common prime factors to get HCF, }}$$

                       $${\text{H}}{\text{.C}}{\text{.F  =  }}5$$

    $${\textbf{Step  - 6: Solving F}}$$

                       $${\text{Prime factorizing 16, 48 and 80,}}$$

                       $$ \Rightarrow {\text{ 16  =  2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2}}$$

                       $$ \Rightarrow {\text{ 48  =  2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 3}}$$

                       $$ \Rightarrow {\text{ 80  =  2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 5}}$$

                       $${\text{Multiplying common prime factors to get HCF, }}$$

                       $${\text{H}}{\text{.C}}{\text{.F  =  2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2  =  16}}$$

    $${\textbf{Hence, we have found H.C.F of different pair of numbers using prime factorization method}}$$

  • Question 4
    1 / -0
    Mark the correct alternative of the following.
    The HCF of $$100$$ and $$101$$ is _________.
    Solution
    The given numbers $$100$$ and $$101$$ are consecutive numbers and respectively even and odd numbers.
    $$\implies$$ Numbers are co-prime
    So the HCF is $$1$$.
  • Question 5
    1 / -0
    The HCF of 144 and 198 is
    Solution
    $$\textbf{Step-1: Find the prime factors of given numbers & apply the concept of H.C.F.}$$

                     $$\text{Given numbers are}$$ $$144$$ $$\text{and}$$ $$198$$

                     $$\text{Representing the given numbers as the product of their prime factors:}$$

                     $$144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$$

                     $$ = 2^4 \times 3^2$$

                     $$ 198 = 2 \times 3 \times 3 \times 11$$

                     $$ = 2 \times 3^2 \times 11$$

                     $$\text{We know that}$$ $$HCF$$ $$\text{of two or more numbers is the product of all}$$ 
                     $$\text{ prime factors common between them.}$$

                     $$\text{So,}$$ $$HCF(144, 198)=2\times 3^2$$

                     $$=2\times 9$$

                     $$=18$$

                     $$\text{So, the}$$ $$HCF$$ $$\text{of}$$ $$144$$ $$\text{and}$$ $$198$$ $$\text{is}$$ $$18$$.

    $$\textbf{Hence, the correct option is D}$$
  • Question 6
    1 / -0
    The HCF of $$144, 180$$ and $$192$$ is
    Solution
    Hence $$144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 2^4 \times 3^2$$
    $$180 = 2 \times 2 \times 3 \times 3 \times 5 = 2^2 \times 3^2 \times 5$$
    $$192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 = 2^6 \times 3$$
    Hence $$2^2 \times 3=12$$ is the highest common factor of all the three numbers
    Option (a) is the correct answer

  • Question 7
    1 / -0
    Choose the correct alternative answer for the question given below.
    Decimal expansion of which of the following is non-terminating recurring?
    Solution
    1) Since, $$5 = 2^0 \times 5^1$$, which is in the form of $$2^m \times 5^n$$, where m and n are no - negative integers.
    So, the decimal expansion of $$\dfrac{2}{5}$$ is terminating.
    2) Since, $$16 = 2^4 \times 5^0$$, which in the form of $$2^m \times 5^n$$, where m and n are no - negative integers.
    So, the decimal expansion of $$\dfrac{3}{16}$$ is terminating.
    3) Since, $$11 = 2^0 \times 5^0 \times 11^1$$, which is not in the form of $$2^m \times 5^n$$, where m and n are non - negative integers.
    So, the decimal expansion of $$\dfrac{3}{11}$$ is non - terminating recurring.
    4) Since, $$25 = 2^0 x 5^2$$, which is in the form of $$2^m \times 5^n$$, where m and n are non - negative integers.
    So, the decimal expansion of $$\dfrac{137}{25}$$ is terminating.
  • Question 8
    1 / -0
    In the decimal expansion of rational number $$ \dfrac{43}{{2}^{2} \times {5}^{3}} $$, after how many digits decimal will end ?
    Solution
    Given, $$ \dfrac{43}{2^2 \times 5^3} $$ .
    Multiply by $$2$$ in numerator and denominator of number,
    $$ \dfrac{43}{2^2 \times 5^3} $$  $$ =\dfrac{43\times2}{2^3 \times 5^3} = \dfrac{86}{10^3} = 0.086$$.

    Therefore, after three digits of decimal, the decimal expansion of the given rational number will terminate.
  • Question 9
    1 / -0
    Decimal expansion of number $$ \dfrac{441}{2^{2} \times 5^{7} \times 7^{2}} $$ will be:
    Solution
    $$\textbf{Step 1 : Simplify the given fraction. }$$

                     $$\text{The given fraction is :}$$$$\dfrac{441}{2^2\times5^7\times7^2}$$.

                     $$\text{It can be reduced to}$$ $$\dfrac{9}{2^2\times5^7}$$

                     $$\text{Since the new denominator is of the form}$$ $$2^{m} \times 5^{n} $$, 
                     $$\text{the given number will have a terminating decimal expansion.}$$

    $$\textbf{Hence, correct option is A.}$$

     
  • Question 10
    1 / -0
    If a rational number $$ x = \dfrac{p}{q} $$ such as a prime factor of $$q$$ is not the form of $$2^{n}  5^{m}$$ where $$ n , m $$ is a zero integer, then decimal expansion of $$x$$ is 
    Solution
    A rational number $$x$$ expressed as $$ x = \dfrac{p}{q} $$ where the prime factorization of $$q$$ in the form of $$2^n5^m$$ is having the terminating decimal expansion.
    So, if a rational number $$ x = \dfrac{p}{q} $$ such as a prime factor of $$q$$ is not the form of $$2^{n}  5^{m}$$ where $$ n , m $$ is a zero integer, then decimal expansion of $$x$$ is non terminating repeating decimal
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now