$${\textbf{Step - 1: Solving A}}$$
$${\text{Prime factorizing 8 and
40,}}$$
$$ \Rightarrow {\text{ 8 = 2 }}
\times {\text{ 2 }} \times {\text{ 2}}$$
$$ \Rightarrow {\text{ 40 = 2 }}
\times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 5}}$$
$${\text{Multiplying common prime
factors to get HCF, }}$$
$${\text{H}}{\text{.C}}{\text{.F = 2 }}
\times {\text{ 2 }} \times {\text{ 2
= 8}}$$
$${\textbf{Step - 2: Solving B}}$$
$${\text{Prime factorizing 15 and
25,}}$$
$$ \Rightarrow {\text{ 15 = 3 }}
\times {\text{ 5}}$$
$$ \Rightarrow {\text{ 25 = 5 }}
\times {\text{ 5}}$$
$${\text{Multiplying common prime
factors to get HCF, }}$$
$${\text{H}}{\text{.C}}{\text{.F = 5}}$$
$${\textbf{Step - 3: Solving C}}$$
$${\text{Prime factorizing 16 and
60,}}$$
$$ \Rightarrow {\text{ 16 = 2 }}
\times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2}}$$
$$ \Rightarrow {\text{ 60 = 2 }}
\times {\text{ 2 }} \times {\text{ 3 }} \times {\text{ 5}}$$
$${\text{Multiplying common prime
factors to get HCF, }}$$
$${\text{H}}{\text{.C}}{\text{.F = 2 }}
\times {\text{ 2 = 4}}$$
$${\textbf{Step - 4: Solving D}}$$
$${\text{Prime factorizing 14 and
35,}}$$
$$ \Rightarrow {\text{ 14 = 2 }}
\times {\text{ 7}}$$
$$ \Rightarrow {\text{ 35 = 5 }}
\times {\text{ 7}}$$
$${\text{Multiplying common prime
factors to get HCF, }}$$
$${\text{H}}{\text{.C}}{\text{.F = 7}}$$
$${\textbf{Step - 5: Solving E}}$$
$${\text{Prime factorizing 15, 25
and 60,}}$$
$$ \Rightarrow {\text{ 15 = 3 }}
\times {\text{ 5}}$$
$$ \Rightarrow {\text{ 25 =
}}5{\text{ }} \times {\text{ 5}}$$
$$ \Rightarrow {\text{ 60 = 2 }}
\times {\text{ 2 }} \times {\text{ 3 }} \times {\text{ 5}}$$
$${\text{Multiplying common prime
factors to get HCF, }}$$
$${\text{H}}{\text{.C}}{\text{.F = }}5$$
$${\textbf{Step - 6: Solving F}}$$
$${\text{Prime factorizing 16, 48
and 80,}}$$
$$ \Rightarrow {\text{ 16 = 2 }}
\times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2}}$$
$$ \Rightarrow {\text{ 48 = 2 }}
\times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 3}}$$
$$ \Rightarrow {\text{ 80 = 2 }}
\times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 5}}$$
$${\text{Multiplying common prime
factors to get HCF, }}$$
$${\text{H}}{\text{.C}}{\text{.F = 2 }}
\times {\text{ 2 }} \times {\text{ 2 }} \times {\text{ 2 = 16}}$$
$${\textbf{Hence, we have
found H.C.F of different pair of numbers using prime factorization method}}$$