Self Studies

Circles Test - 21

Result Self Studies

Circles Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Draw two concentric circles of radii 3 cm and 5 cm. Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.
    Solution
    A tangent to a circle is perpendicular to the radius at the point of tangency.
    Using this property and Pythagoras Theorem,
    $$AO^2 = AP^2 + OP^2$$
    $$5^2 = AP^2 + 4^2$$
    Thus, $$AP = 4$$ cm

  • Question 2
    1 / -0
    The length of the tangents from a point A to a circle of radius $$3$$ cm is $$4$$ cm. The distance (in cm) of A from the center of the circle is:
    Solution
    We use the fact that tangent is perpendicular to radius at the point of contact, so, the distance of the point $$A$$ from the center of the circle is $$\sqrt{3^2+4^2} = 5 cm$$.
    So option C is the right answer.
  • Question 3
    1 / -0
    In the given figure, if OC $$=$$ 9 cm and OB $$=$$ 15 cm, then BC $$+$$ BD is equal to:

    Solution
    We know that, a tangent to a circle is perpendicular to the radius at the point of contact. 
    So, $$\triangle OCB$$ is right a triangle, right angled at $$C$$.

    Hence, by Pythagoras' theorem, we have:
    $$BC^2 = OB^2 - OC^2$$ 
    $$\Rightarrow BC^2=225-81 = 144$$ 
    $$\therefore \ BC = 12 \ cm$$.

    We also know that, the tangents drawn from the same external point to a circle are equal.
    Since $$BC$$ and $$BD$$ are tangents drawn from the same external point, $$B$$, we have: 
    $$BC=BD = 12\ cm$$.
    So, $$BC + BD = 24 \ cm$$.

    Hence, $$BC+BD=24\ cm$$.
  • Question 4
    1 / -0
    Out of the two concentric circles, the radius of the outer circle is $$5\ cm$$ and the chord $$AC$$ of length $$8\ cm$$ is a tangent to the inner circle. Find the radius of the inner circle.
    Solution
    $$ Given-\\ Two\quad concentric\quad circles\quad have\quad the\quad centre\quad as\quad O.\\ AB\quad is\quad a\quad chord\quad of\quad the\quad outer\quad circle\quad and\quad AB\quad touches\quad the\quad inner\\ circle\quad at\quad T.\\ OA=OB=5cm\quad and\quad AB=8cm.\\ To\quad find\quad out-\quad \\ The\quad radius\quad of\quad the\quad inner\quad circle\quad i.e\quad OT=?\\ Solution-\\ AB\quad touches\quad the\quad inner\quad circle\quad at\quad T.\quad \\ So\quad the\quad line\quad OT\quad from\quad the\quad centre\quad O\quad to\quad T\quad is\quad \\ perpendicular\quad to\quad AB\quad at\quad T.\\ i.e\quad \angle OTA={ 90 }^{ o }=\angle OTB.....(i)\\ \therefore \quad Between\quad \Delta OTA\quad \& \quad \Delta OTB\quad we\quad have\quad \\ OA=OB=5cm\quad (given)\\ \angle OTA=\angle OTB={ 90 }^{ o }\quad (from\quad i)\\ \therefore \quad \Delta OTA\quad \& \quad \Delta OTB\quad are\quad congruent\quad by\quad SAS\quad test.\\ \Longrightarrow AT=BT\quad or\quad AT=\frac { 1 }{ 2 } \times AB\\ \Longrightarrow AT=\frac { 1 }{ 2 } \times 8cm=4cm.\\ Now\quad in\quad \Delta OTA\quad we\quad have\quad \angle OTA={ 90 }^{ o }\\ i.e\quad \Delta OTA\quad is\quad right\quad angled\quad at\quad \quad T\quad with\quad OA\quad as\quad hypotenuse.\\ \therefore \quad Applying\quad Pythagoras\quad theorem,\quad we\quad have,\\ { OT }^{ 2 }={ OA }^{ 2 }-{ AT }^{ 2 }\\ \Longrightarrow OT=\sqrt { { OA }^{ 2 }-{ AT }^{ 2 } } =\sqrt { { 5 }^{ 2 }-{ 4 }^{ 2 } } cm=3cm\\ So\quad the\quad radius\quad of\quad the\quad inner\quad circle\quad 3cm.\\ Ans-\quad 3cm.\\  $$

  • Question 5
    1 / -0
    In the figure, AT is a tangent to the circle with center O such that OT $$=$$ 4 cm and $$\angle OTA =30^{0}$$. then AT is equal to

  • Question 6
    1 / -0
    If radii of two concentric circles are 4 cm and 5 cm, then the length of each chord of one circle which is tangent to the other circle is
    Solution
    $$ Given-\\ The\quad radii\quad of\quad two\quad concentric\quad cirles\quad with\quad centre\quad O\quad are\quad 5cm\quad \& \quad 4cm.\\ The\quad chord\quad AB\quad of\quad outer\quad circle\quad touches\quad the\quad inner\quad circle\quad at\quad P.\\ To\quad find\quad out-\\ The\quad length\quad of\quad AB=?.\\ $$
    The radius of a   circle is at the right angle at the point of contact of the tangent to the circle with the tangent.    
     
    $$Solution-\\ AB\quad touches\quad the\quad inner\quad circle\quad at\quad P.\\ \therefore \quad AB=2AP,\quad OP\bot AB\quad \quad \quad \\ \Longrightarrow \Delta AOP\quad is\quad a\quad right\quad angled\quad one\quad with\quad AO\quad as\quad the\quad hypotenuse.\\ Now\quad in\quad \Delta AOP\quad AO=5CM,\quad OP=4cm\\ \therefore \quad AP=\sqrt { { AO }^{ 2 }-{ AP }^{ 2 } } =\sqrt { { 5 }^{ 2 }-{ 4 }^{ 2 } } cm=3cm.\\ \therefore \quad AB=2AP=2\times 3cm=6cm\\ Ans-\quad Option\quad B\\ \\ \\ \\  $$ 

  • Question 7
    1 / -0

    Two tangents are drawn from an external point P (as shown in fig.) such that $$\angle OBA=10^{\circ}$$ . Then angle $$\angle BPA$$ is.

    Solution
    Since tangent and radius are perpendicular at the point of contact, we have: 
    $$\angle OAP = \angle OBP = 90^{\circ}$$.
    So, $$\angle AOB + \angle BPA = 180^{\circ}       \dots(1)$$

    In $$\triangle OAB$$, $$OA = OB$$, so, $$\angle OAB = \angle OBA = 10^{\circ}$$.
    So, $$\angle AOB = 180^{\circ} - 10^{\circ} - 10^{\circ} = 160^{\circ}      \dots(2)$$

    From $$(1)$$ and $$(2)$$, we get $$\angle BPA = 180^{\circ} - 160^{\circ} = 20^o$$.
    So option B is the right answer. 
  • Question 8
    1 / -0
    Write True or False:
    If a chord AB subtends an angle of $$60^{0}$$ at the centre of a circle, the angle between the tangents at A and B is also $$60^{0}$$.
    Solution
    Given-
    PA & PB are tangents to the circle with centre O at A & B, respectively.
    The chord AB subtends an angle $${ 60 }^{ o }$$ at O.
    To find out- 
    The assertion, $$\angle APB={ 60 }^{ o }$$ is true or false.
    Justification-
    PA & PB are tangents to the circle at A & B respectively.
    $$ \therefore  \angle PAO = \angle PBO ={ 90 }^{ o }.$$ 
    Now, in the quadrilateral APBO, 
    $$ \angle PAO + \angle PBO +\angle AOB +\angle APB =360^{ o } $$       ...(angle sum property of quadrilaterals)
    $$ \Longrightarrow { 90 }^{ o }+{ 90 }^{ o }+{ 60 }^{ o }+\angle APB={ 360 }^{ o }$$ 
    $$\Longrightarrow \angle APB={ 120 }^{ o }$$ 
    $$\therefore$$ The assertion, $$\angle APB={ 60 }^{ o }$$, is false
  • Question 9
    1 / -0
    In the figure, PT is a tangent to the circle with centre O. If $$ PT = 30$$ cm and diameter of the circle is 32 cm, then the length of line segment OP will be

    Solution
    Given $$ PT= 30 \hspace {1 mm} cm$$
    $$ OT $$ is the radius of a cicle 
    therefore $$OT$$ will be half of given diameter 
    $$OT$$ = $$16 \hspace {1 mm} cm$$ 
    $$\angle OTP$$ = $${90}^{\circ}$$  (tangent is perpendicular to radius at point of contact)
    now apply pythoguras theorem to 
    $${OP}^{2} = {OT}^{2} + {TP}^{2}$$
    $${OP}^{2}={16}^{2} + {30}^{2}$$
    $$OP=\sqrt{1156}$$
    $$OP = 34$$

    So answer will be option B.
  • Question 10
    1 / -0
    In above Figure, AB is a chord of a circle with centre O, AC is a tangent at A, making an angle of $$80^{\circ}$$ with AB. Then $$\angle AOB$$ is equal to:

    Solution
    We know that, tangent to a circle is perpendicular to radius at the point of contact. 
    So, $$\angle OAC = \angle OAB + \angle BAC$$
    $$\Rightarrow \angle OAB+80^o = 90^o\quad \quad [\because \ \angle OAC=90^o]$$ 
    $$\Rightarrow \angle OAB = 10^o$$
    Also, $$OA = OB$$      [radii of same circle]
    Hence, $$\triangle OAB$$ is isosceles.
    So, $$\angle OAB = \angle OBA = 10^o$$     [Angles opposite to equal sides of a $$\triangle$$ are equal]
    By using angle sum property of a triangle, we get:
    $$\angle AOB = 180^o - 10^o - 10^o$$        $$[\angle AOB+\angle OAB+\angle OBA=180^o]$$
    $$\Rightarrow \angle AOB=160^o$$

    Hence, option D is correct
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now