Self Studies

Area Related to Circles Test - 16

Result Self Studies

Area Related to Circles Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The length of an arc of a sector of a circle of radius r units and of centre angle $$\theta$$ is $$\displaystyle \frac{\theta}{360^{\circ}} \times \pi r^2$$.
    Solution
    Length of arc subtending angle $$\theta$$ = $$\frac{\theta}{360} \times 2 \pi r $$. Note that area will have the dimension of square of length. So $$\frac{\theta}{360} \times  \pi r^{2} $$, cannot be the length.
  • Question 2
    1 / -0
    If an arc of a circle of radius $$14\ cm$$ subtends an angle of $$60^{\circ}$$ at the centre, then the length of the arc is $$\displaystyle \dfrac{44}{3}\ cm$$.
  • Question 3
    1 / -0
    In a circle of radius 21 cm, an arc subtends an angle of $$60^{\circ}$$ at the centre the length of the arc is 22 cm.
    Solution
    Arc length = $$\frac{\theta}{360} \times 2 \pi r = \frac{60}{360} \times 2 \times \frac{22}{7} \times 21 = 22 cm.$$
  • Question 4
    1 / -0
    A wire in the form of circle of diameter 42 cm is cut and bent to form a square. The side of the square is
    Solution
    Perimeter of square = Circumference of circle

    $$\displaystyle 4\times side=\frac{22}{7}\times d$$ where $$d$$ is diameter.

    $$\displaystyle 4\times side=\frac{22}{7}\times 42=132$$

    $$\displaystyle \Rightarrow side=33\ cm$$
  • Question 5
    1 / -0
    A set of points equidistant from a fixed point in a plane figure is called
    Solution
    A set of points equidistant from a fixed point in a plane figure is called a circle  where the distance between each of the set of the points and the fixed point forms the radius of the circle.

  • Question 6
    1 / -0
    The circumference of a circular playground is 528 m. Find the total expenditure of repairs of the ground at the rate of Rs. 1.50 per square metre $$\displaystyle (\pi = \frac{22}{7})$$
    Solution
    Perimeter of the playground$$=528 m$$
                                $$=>2\pi r=528$$
                                $$=>r=\dfrac{528\times 7}{22\times 2}$$
                                $$=>r=84$$
    Now, Area  of the playground$$=\pi r^2$$
                                                  $$=\dfrac{22}{7}\times 84\times 84$$
                                                  $$=22176m$$
    Therefore,
    Total expenditure$$=area\times 1.50$$
                               $$=22176\times 1.50$$
                               $$=33264$$
  • Question 7
    1 / -0
    Fixed point in the circle is called _____ of the circle.
    Solution

    circle is the set of all those point in a plane whose distance from a fixed point remains constant. Then, this fixed point is called the centre of the circle.

    Hence, option $$B$$ is correct.

  • Question 8
    1 / -0
    If the length of the largest chord of a circle is $$17$$ cm, find the radius of a circle.
    Solution
    Given, the largest chord of a circle $$=17cm$$.
    We know that the largest chord of a circle is its diameter. 
    $$\therefore$$ The diameter of the given circle $$=17 cm$$.
    Hence, radius of the same circle$$=\dfrac { \text {diameter} }{ 2 } =\dfrac { 17 }{ 2 } cm=8.5cm$$. 
    Therefore, option $$B$$ is correct.
  • Question 9
    1 / -0
    In a circle of radius 21 cm an arc subtends an angle of $$\displaystyle 56^{\circ} $$ at the centre of the circle. The length of the arc is
    Solution
    $$\displaystyle \theta =56^{\circ},r=21cm$$
    Length. of $$\displaystyle AB=\dfrac{56^{\circ}}{360^{\circ}}\times 2\times \dfrac{22}{7}\times 21$$
    $$\displaystyle =\dfrac{616}{30}=20.53cm$$
  • Question 10
    1 / -0
    In the  given figure, find the area of the unshaded portion within the rectangle.

    Solution
    Area of a circle $$=\pi r^2$$
                             $$=\frac{22}{7} \times 3 \times 3$$
                             $$=28.29cm^2$$
    $$\therefore$$ Area of the shaded region $$=28.29+28.29+\frac{28.29}{2}$$
                                                     $$=70.73cm^2$$
    Area of the rectangle $$=15\times 6=90cm^2$$
    $$\therefore$$ Area of the unshaded region $$=(90-70.73)cm^2$$
                                                          $$=19.27cm^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now