Self Studies

Area Related to Circles Test - 19

Result Self Studies

Area Related to Circles Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the sum of the circumferences of two circles with radii $$R_1$$ and $$ R_2$$ is equal to the circumference of a circle of radius $$R$$, then
    Solution
    The  circumference of circle with radius $${ R }_{ 1 }=2\pi { R }_{ 1 }$$.
    and the circumference of circle with radius$$ { R }_{ 2 }=2\pi { R }_{ 2 }.$$ 
    $$\therefore$$ The Sum of Circumferences, $$Sum=2\pi \left( { R }_{ 1 }+{ R }_{ 2 } \right)$$ .
    Again the circumference of circle with radius $${ R }=2\pi { R }.$$
    $$ \therefore$$ By given condition,
    $$ 2\pi \left( { R }_{ 1 }+{ R }_{ 2 } \right) =2\pi { R }\Longrightarrow { R }_{ 1 }+{ R }_{ 2 }=R$$.
  • Question 2
    1 / -0
    A horse is placed for grazing inside a square field 12 cm  long and is tethered to one  corner by a rope 8 cm long.  The area it can graze is
    Solution
    Let the grazed portion is shown by shaded quadrant ABC,
    Hence, area which horse can graze
    $$= \frac{1}{4}\pi (8)^2 = \frac{1}{4}\times \frac{22}{7}\times 64$$
    $$= 50.28$$ sq cm

  • Question 3
    1 / -0
    A circular disc of radius 10 cm is divided into sectors with  angles $$120^{\circ}$$ and $$150^{\circ}$$ then  the ratio of the area of two  sectors is
    Solution
    Area of sector formed from angle $$\theta$$ = $$\frac{\theta}{260} \pi r^2$$, where r is the radius of the circle
    Now, if angle is 120, 150 then the ratio of area of sector will be:
    = $$\dfrac{\dfrac{120}{360} \pi r^2}{\dfrac{150}{360} \pi r^2}$$
    = $$\dfrac{120}{150} = 4:5$$
  • Question 4
    1 / -0
    If circumference of a circle is $$110\ cm$$, then its diameter is
    Solution
    $$\Rightarrow$$  The circumference of a circle $$=110\,cm$$

    $$\Rightarrow$$  $$2\pi r=110$$

    $$\Rightarrow$$  $$2\times \dfrac{22}{7}\times r=110$$

    $$\Rightarrow$$  $$r=110\times \dfrac{7}{22}\times \dfrac{1}{2}$$

    $$\Rightarrow$$  $$r=\dfrac{35}{2}$$

    $$\Rightarrow$$  $$r=17.5\,cm$$

    $$\Rightarrow$$  Diameter of circle $$(d)=2r=2\times 17.5\,cm=35\,cm$$
  • Question 5
    1 / -0
    Semi-circular lawns are attached to the edges of a rectangular field measuring $$42 \ m \times 35\  m$$. The area of the total field is:
    Solution
    Given, length of field $$ = 42 \ m$$
    Breadth of field $$ = 35 \ m$$
    Radius of semi circles along length $$ = \cfrac{42}2 \ m = 21\ m$$
    Radius of semi circles along breadth $$ = \cfrac{35}2\ m = 17.5\ m$$
    Now, 
    Total area of the field $$ = $$ Area of rectangle $$+$$ Area of circle formed along length $$+$$ Area of circle formed along breadth
    $$ = l\times b + \pi (21)^2 + \pi( 17.5)^2 \ m^2$$
    $$ = (42\times 35 + 1386 + 962.5)\ m^2$$     (take $$\pi = \dfrac {22}{7}$$)
    $$ = 3818.5 \ m^2$$

    So, Total Area of the field $$ = 3818.5 m^2$$

  • Question 6
    1 / -0
    The radius of a circle is increased by $$1$$ cm, then the ratio of the new circumference  to the new diameter is
    Solution
    $$\frac{Circumference}{Diameter}=\frac{2 \pi (r+1)}{2(r+1)}$$
    $$\frac{Circumference}{Diameter}=\pi$$
  • Question 7
    1 / -0
    The figure is made up of an isosceles triangle and a semi-circle. Find the perimeter of the figure.

    Solution
    Perimeter of semicircular arc = $$\pi \times \dfrac d2$$
    $$=\pi \times \dfrac82$$
    $$=4\pi\ cm$$

    Total Perimeter = Perimeter of semi-circular arc $$+$$ Sum of outer sides of triangle $$ABC$$
    Total Perimeter $$= l(BOC) + CA+AB$$
    $$= 7 + 7 + 4\pi$$
    $$=14+4\pi$$
    $$=2(7+2\pi)$$ cm
  • Question 8
    1 / -0
    The number of revolutions made by a wheel of diameter $$56 cm$$ in covering a distance of $$1.1 km$$ is $$\left ( Use \pi = \frac{22}{7} \right )$$
    Solution
    Total distance covered by the wheel $$ = 1.1 km = 1.1\times 100000cm = 110000 cm$$
    diameter of wheel $$ = 56 cm$$
    So, $$r = \dfrac {56}{2}$$
    $$ r = 28 cm$$
    Now,Circumference of wheel  =  Distance covered in one round
    $$ = 2\pi\times r = 2\pi\times 28$$
    So, distance covered in one round $$ = 176 cm $$
    Number of revolutions  $$= \dfrac {total\  distance\  covered}{Circumference}$$
    $$ = \dfrac {110000}{176}$$
    So, number of revolutions covered by wheel  $$ =  625$$

  • Question 9
    1 / -0
    Find the area enclosed between the circles. Given that each circle is having a radius of $$2\ cm.$$

    Solution
    The radii of the circles with center $$A$$ and $$B$$ is equal to $$r=2\ cm.$$ Since they touch each other $$AB$$ will pass through the point of contact of those circles and,
    $$AB=2r$$
           $$=2\times 2$$
           $$=4\ cm$$

    Similarly,
    $$BC=4\ cm$$
    $$AC=4\ cm$$

    $$\therefore\ \triangle ABC$$ is an equilateral triangle. So,
    $$ar\left( {\triangle ABC} \right) = \dfrac{{\sqrt 3 }}{4}{a^2}$$
                           $$ = \dfrac{{\sqrt 3 }}{4} \times 4 \times 4$$
                           $$ = 4\sqrt3 \ cm^2$$

    $$ \triangle ABC$$ crops $$3$$ sectors with each of them having radius equal to $$2\ cm$$ and central angle equal to respective vertex angle of the $$\triangle ABC$$ that is equal to $$60^o.$$ So, the three sectors are equal in area.

    Sum of area of $$3$$ sectors $$=$$ $$3$$ $$\times$$ Area of $$1$$ sector
                                              $$=3\times \dfrac{\theta}{360^o}\times\pi r^2$$
                                              $$=3\times \dfrac{60^o}{360^o}\times\pi \times2^2$$
                                              $$=2\pi\ {cm}^2$$

    Now, area between circles $$=$$ Area of $$\triangle ABC$$ $$-$$ Area of $$3$$ sectors
                                                  $$=4\sqrt3-2\pi$$
                                                  $$=2\left({2\sqrt3-\pi}\right)\ {cm}^2$$
  • Question 10
    1 / -0

    The diameter of a circle is $$10 cm$$. Find the length of the arc, when the corresponding central angle is $$270^o$$.  $$(\pi =3.14)$$

    Solution
    Radius of the circle $$ = \dfrac {Diameter}{2} = 5  cm $$

    Length

    of an arc subtending an angle $$ \theta  = \dfrac { \theta  }{ 360 }

    \times 2\pi R $$ where R is the radius of the circle.

    So, length of the arc $$ = \dfrac {270} {360} \times 2 \times 3.14\times 5  = 23.55 cm $$


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now