Self Studies

Area Related to Circles Test - 22

Result Self Studies

Area Related to Circles Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the circumference of a circle is $$\displaystyle \frac{30}{\pi }$$ then the diameter of the circle is 
    Solution
    $$\displaystyle 2\pi r=\frac{30}{\pi }$$
    $$\displaystyle 2 r=\frac{30}{\pi^{2} }$$
  • Question 2
    1 / -0
    The radius of a circle is $$14$$ m, then the circumference of a circle is 
    Solution
    $$r = 14 $$m
    Circumference $$ = 2\displaystyle \pi r$$
    $$\displaystyle =2\times \frac{22}{7}\times 14= 88m$$
  • Question 3
    1 / -0
    The area of the sector of a circle whose radius is 6 m when the angle at the centre is $$\displaystyle 42^{\circ}$$ is 
    Solution
    Area of sector $$\displaystyle =\frac{42}{360}\times \pi r^{2}$$
    $$\displaystyle =\frac{42}{360}\times \frac{22}{7}\times6\times6=13.2m^{2}$$
  • Question 4
    1 / -0

    Directions For Questions

    In the given figure, $$ABCD$$ is a rectangle inscribed in a circle. If two adjacent sides of the rectangle be $$8\ cm$$ and $$6\ cm$$, calculate
    [Take $$\pi \, =\, 3.14$$]

    ...view full instructions

    The area of the shaded region

    Solution
    Given, 
    $$AB=8$$ cm and $$BC=6$$ cm
    The diagonal of the inscribed rectangle will be the diameter of the circle.
    Thus, by Pythagoras Theorem, we get
         $$(AC)^2=(AB)^2+(AC)^2$$
                      $$=8^2+6^2$$
                     $$=64+36$$
                     $$=100$$
     $$=>AC=\sqrt{100}$$
     $$=>AC=10$$
    Thus, radius $$= \frac{10}{2}$$
                         $$=5$$ cm
    Area of the rectangle ABCD $$=8\times 6$$
                                                    $$=48cm^2$$
    Area of the circle $$=\pi (5)^2$$
                                   $$=3.14\times 25$$
                                   $$=78.5 cm^2$$
    Thus, the area of the shaded portion is $$=(78.5-48)cm^2$$
                                                                       $$=30.5 cm^2$$
  • Question 5
    1 / -0
    The area of a segment of a circle of radius $$21$$ cm if the arc of the segment has a measure of $$60^{\circ}$$ is
    (Take $$\sqrt 3\, =\, 1.73$$)
    Solution
    Area of sector $$OAB$$ $$=\, \displaystyle \frac {x}{360}\, \times\, \pi r^2$$
    $$= \displaystyle \frac {60}{360}\, \times\, \displaystyle \frac {22}{7}\, \times\, 21\, \times\, 21$$
    $$=231$$ sq. cm
    Here, the triangle ABC is an equilateral triangle, so the area of $$\triangle\, OAB\, =\, \displaystyle \frac {\sqrt 3}{4}\, r^2$$
    $$= \displaystyle \frac {\sqrt 3}{4}\,\times\, 21\, \times\, 21$$
    $$=190.73$$ sq. cm
    Therefore, area of shaded region $$=\, 231\, -\, 190.73$$
    $$=\, 40.27$$ sq. cm
  • Question 6
    1 / -0
    The sides of a triangle are $$5$$, $$12$$ and$$ 13$$ units. A rectangle of width $$10$$ units is constructed equal in area to the area of the triangle. Then the perimeter of the rectangle is 
    Solution
    By Pythagoras theorem, we find that the given triangle is a right angled triangle with $$12$$ as height and $$5$$ as base. 
    $$\displaystyle \therefore $$ Area of the triangle $$\displaystyle =\frac{1}{2}\times12\times5sq. units$$
    $$=30$$ sq. units
    $$\displaystyle \therefore $$ Area of the rectangle $$= length \times breadth = 30$$
    $$\displaystyle \Rightarrow Length =\frac{30}{breadth}=\frac{30}{10}=3\, units$$
    $$\displaystyle \therefore$$ Perimeter of the rectangle $$ = 2 \times ( 10 + 3 ) $$Units 
    $$= 26$$ units.
  • Question 7
    1 / -0
    A square sheet of paper is converted into a cylinder by rolling it along its length. What is the ratio of the base radius to side of the square ?
    Solution
    Let length of each side of the square $$=a$$
    Base radius of cylinder $$=r$$
    Surface area of sheet $$={ a }^{ 2 }$$
    Surface area of cylinder $$=2\pi rh$$
    But height $$h=a$$, because the square sheet is rolled it along its length.
    Thus, surface area of cylinder $$=2\pi ra$$
    Therefore, $${ a }^{ 2 }=2\pi ra\Rightarrow a=2\pi r\Rightarrow \dfrac { r }{ a } =\dfrac { 1 }{ 2\pi  } $$
  • Question 8
    1 / -0
    In the given figure , AC is diameter of a circle with radius 5cm. If AB = BC and CD = 8 cm, the area of the shaded region to the nearest whole number is

    Solution
    Given that, AC is the diameter of a circle with radius $$5 \ cm$$
    and $$AB=BC, CD=8\ cm$$
    $$\therefore \ AC=10\ cm$$
    Area of the circle $$=\pi (5)^2$$$$=25\pi \ cm^2$$        $$[\because \ \text{Area of a circle}=\pi r^2 \text{ square units}]$$

    We know that, angle subtended by the diameter of a circle at any point on the circle is a right angle.
    Hence, $$\triangle ABC$$ is a right angled triangle with $$\angle B=90^o$$
    $$\therefore AC^2=AB^2+BC^2$$       [Pythagoras theorem]
    $$\Rightarrow100=2AB^2$$
    $$\Rightarrow AB^2=50$$
    $$\Rightarrow AB=\sqrt{50}$$
    $$\Rightarrow AB=5\sqrt2$$
    $$\therefore AB=BC=5\sqrt2$$
    Area of $$\triangle ABC$$$$=\cfrac{1}{2}\times AB\times BC$$ 
    $$\Rightarrow \cfrac{1}{2}\times 5 \sqrt2 \times 5 \sqrt2$$$$=25 \ cm^2$$
    Similarly,
    $$\triangle ADC$$ is a right angled triangle with $$\angle D=90^o$$
    $$\therefore AC^2=AD^2+DC^2$$
    $$\Rightarrow 10^2=AD^2+8^2$$
    $$\Rightarrow 100=AD^2+64$$
    $$\Rightarrow AD^2=36$$
    $$\Rightarrow AD=6$$
    Area of $$\triangle ADC$$$$=\cfrac{1}{2}\times AD\times DC$$
    $$\Rightarrow \cfrac{1}{2}\times 6\times 8$$$$=24 \ cm^2$$
    Area of shaded region $$=25\pi-25-24$$
    $$\Rightarrow 25\pi -49=29.5 \ cm^2$$
    The nearest whole number of $$29.5$$ is $$30$$.
    Hence, the area of the shaded region to the nearest whole number is $$30 \ cm^2$$
  • Question 9
    1 / -0
    A right angled isosceles triangle is inscribed in a circle of radius $$ r$$. What is the area of the remaining portion of the circle? 

    Solution
    Let the sides containing the right angle be $$a$$ units each and $$r$$ be the radius of the circle.
    The hypotenuse of the right-angled triangle is the diameter of the circle. So, by applying Pythagoras theorem,
    $$a^{2}+a^{2}=\left ( 2r \right )^{2}$$
    $$\displaystyle \Rightarrow 2a^{2}=4r^{2}$$
    $$\Rightarrow a=\sqrt{2} r $$

    $$\therefore $$ Remaining area $$=$$ Area of circle $$-$$ Area of triangle 
    $$A=\pi r^{2}-\dfrac{1}{2}\left ( r\sqrt{2} \right )\left ( r\sqrt{2} \right )$$
        $$=\pi r^{2}-r^{2}$$
        $$=r^{2}\left ( \pi  - 1 \right )$$

    Hence, area of the remaining region is equal to $$(\pi-1)r^2.$$
  • Question 10
    1 / -0
    In the diagram shown, $$ABCD$$ is a parallelogram and $$CDEF$$ is a rectangle. The total area of the whole figure is

    Solution
    Total area of the whole diagram $$=$$ Area of parallelogram $$ABCD +$$ Area of rectangle $$CDEF$$

    Area of parallelogram$$ABCD=$$ base$$\times $$height
                                                  $$=5\times 3\ cm^2$$
                                                  $$=15\ cm^2$$

    Area of rectangle $$CDEF=2\times 5\ cm^2$$
                                             $$=10\ cm^2$$

    Let $$A$$ be the total area of figure,

    $$A=(15+10)\ cm^2$$
        $$=25\ cm^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now