Self Studies

Area Related to Circles Test - 23

Result Self Studies

Area Related to Circles Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Out of the following shapes having equal perimeters, which is the one having the largest area :
    Solution
    $$ Let\quad the\quad given\quad perimeter\quad be\quad P.\\ We\quad calculate\quad the\quad areas\quad of\quad the\quad given\quad figures\quad \\ and\quad compare.\\ Option\quad A\longrightarrow circle.\\ The\quad perimeter(circumference)=P\\ \Longrightarrow 2\pi r=P\quad (when\quad r=radius\quad of\quad the\quad circle.)\\ \Longrightarrow r=\frac { P }{ 2\pi  } \\ \therefore \quad ar.circle=\pi { r }^{ 2 }=\pi \times { \left( \frac { P }{ 2\pi  }  \right)  }^{ 2 }=\frac { { P }^{ 2 } }{ 4\times 3.14 } =\frac { { P }^{ 2 } }{ 12.56 } .\\ Option\quad B\longrightarrow Equilateral\quad triangle.\\ One\quad side=\frac { P }{ 3 } .\\ \therefore \quad area=\frac { \sqrt { 3 }  }{ 4 } { side }^{ 2 }=\frac { \sqrt { 3 }  }{ 4 } \times { \left( \frac { P }{ 3 }  \right)  }^{ 2 }=\frac { { P }^{ 2 } }{ 20.77 } .\\ Option\quad C\longrightarrow Square\\ side=\frac { P }{ 4 } \\ \therefore \quad area=\frac { P }{ 4 } \times \frac { P }{ 4 } =\frac { { P }^{ 2 } }{ 16 } .\\ Option\quad D\longrightarrow Regular\quad pentagon.\\ side=\frac { P }{ 5 } .\\ \therefore \quad ar.pentagon=\frac { 1 }{ 4 } \sqrt { 5\left( 5+2\sqrt { 5 }  \right)  } \times { side }^{ 2 }\\ =\frac { 1 }{ 4 } \sqrt { 5\left( 5+2\sqrt { 5 }  \right)  } \times { \left( \frac { P }{ 5 }  \right)  }^{ 2 }=\frac { { P }^{ 2 } }{ 19.95 } .\\ \therefore \quad comparing\quad the\quad areas\quad we\quad get\\ the\quad ar.circle\quad is\quad the\quad greatest.\\ Ans-\quad Option\quad A\\  $$ 
  • Question 2
    1 / -0
    A chord of a circle of radius $$7$$ cm. subtends an angle of $$90^o$$ at its centre. The ratio of areas of smaller and larger segment is
    Solution
    Area of minor segment
    $$=\dfrac {\pi \times R^2}{4}-\dfrac {1}{2}\times R^2$$
    $$=\dfrac {(\pi -2)}{4}R^2$$ ..........(1)
    Area of major segment
    $$=\pi R^2-\dfrac {(\pi-2)}{4}R^2$$
    $$=\dfrac {[4\pi-(\pi-2)]}{4}R^2$$ ............(2)
    $$\therefore$$ required ratio $$=\dfrac {\pi -2}{3\pi+ 2}=\dfrac {8}{80}=\dfrac {1}{10}$$
  • Question 3
    1 / -0
    A sector of $$120^{\circ}$$ cut out from a circle has an area of $$9\displaystyle \frac {3}{7}$$ sq cm. The radius of the circle is
    Solution
    Given, area of an sector $$=9\dfrac {3}{7}$$ sq. cm , $$\theta=120^0$$
    We know Area of sector $$=\dfrac {\theta}{360}\times \pi r^2$$
    $$\Rightarrow \displaystyle \frac {\theta}{360}\, \times\, \pi r^2\, =\, 9\, \displaystyle \frac {3}{7}$$
    $$\Rightarrow \displaystyle \frac {120}{360}\, \times\, \displaystyle \frac {22}{7}\, \times\, r^2\, =\, \displaystyle \frac {66}{7}$$
    $$\Rightarrow r^2\, =\, \displaystyle \frac {66}{7}\, \times\, \displaystyle \frac {360}{120}\, \times\, \displaystyle \frac {7}{22}\, =\, 9$$
    $$\Rightarrow r\, =\, \sqrt 9\, =\, 3$$ cm
  • Question 4
    1 / -0
    A figure shows a trapezium $$ABCD$$ with two circles of equal diameter drawn in it. If $$ON=56\;cm$$ and $$PM\;\bot\;BC\,,\ \,PM=42\;cm,\;AD=30\;cm$$ and $$BC=64\;cm$$. Find the area of the shaded region.

    Solution
    Let the radius of each circle be $$r.$$

    Then,
    $$\begin{aligned}{}4r &= 56\\r &= 14\ cm\end{aligned}$$

    Area of shaded region $$=$$ Area of trapezium $$-2$$ $$\times $$ Area of circle
                                           $$=$$ $$\dfrac { 1 }{ 2 } \times \left( AD+BC \right) \times PM-2\times \pi { r }^{ 2 }$$

                                           $$ =$$ $$\dfrac { 1 }{ 2 } \times \left( 30+64 \right) \times 42-2\times \dfrac { 22 }{ 7 } \times 14\times 14$$

                                           $$=1974 - 1232$$
                                           $$=742\ { cm }^{ 2 }$$
  • Question 5
    1 / -0
    A chord of a circle of radius $$12$$cm subtends an angle of $$60^o$$ at the centre. Find the area of the corresponding segment of the circle. (Use $$\pi=3.14$$ and $$\sqrt 3=1.73$$).
    Solution
    Here $$r=12cm$$, $$\theta=60^o$$
    Area of the corresponding segment  $$ABXA$$
    $$=\displaystyle\left[\frac{\pi r^2\theta}{360}-\frac{1}{2}r^2\sin\theta\right]$$
    $$=\displaystyle\left[\frac{3.14\times 12\times 12\times 60^o}{360^o}-\frac{1}{2}\times 12\times \sin 60^o\right]$$
    $$=\displaystyle\left[\frac{314}{100}\times 12\times 2-6\times 12\times \displaystyle\frac{\sqrt 3}{2}\right]cm^2$$.    $$\displaystyle\left[\because \sin 60^o=\frac{\sqrt 3}{2}\right]$$
    $$=\displaystyle\left[\frac{7536}{100}-36\times 1.73\right]cm^2$$
    $$=[75.36-62.28]cm^2=13.08cm^2$$
  • Question 6
    1 / -0
    A rectangular sheet of acrylic is 50 cm by 25 cm . From it 60 circular buttons, each of diameter 2.8 cm have been cut out. The area of the remaining sheet is
    Solution
    Required area
    = Area of sheet - 60 $$\displaystyle \times $$ area of 1 button
    $$\displaystyle=\left ( 50\times 25-60\times \dfrac{22}{7}\times 1.4\times 1.4 \right )cm^{2}$$
    $$\displaystyle =\left ( 1250-369.6 \right )cm^{2}$$
    $$\displaystyle =880.4cm^{2}$$
  • Question 7
    1 / -0
    A chord AB of circle of radius $$14 cm$$ makes an angle of $$\displaystyle 60^{\circ} $$ at the centre of the circle .The area of the minor segment of the circle is
    (Use $$\displaystyle \pi =\frac{22}{7} $$)
    Solution


  • Question 8
    1 / -0
    ABCD is a flower bed. If $$OA=21cm$$ and $$OC=14m$$, find the area of the bed.        [Use $$\pi=\displaystyle\frac{22}{7}$$]

    Solution
    We have,
    $$OA=R=21m$$ and $$OC=r=14m$$
    $$\therefore$$ Area of the flower bed
    =Area of a quadrant of a circle of radius R - Area of a quadrant of a circle of radius r
    $$=\displaystyle\frac{1}{4}\pi R^2-\frac{1}{4}\pi r^2$$
    $$=\displaystyle\frac{\pi}{4}(R^2-r^2)$$
    $$=\displaystyle\frac{1}{4}\times \frac{22}{7}(21^2-14^2)cm^2$$     $$[\therefore R=12m$$ and $$r=14m]$$
    $$=\displaystyle\left(\frac{1}{4}\times \frac{22}{7}\times(21+14)(21-14)\right)m^2$$
    $$=\displaystyle\left(\frac{1}{4}\times \frac{22}{7}\times 35\times 7\right)m^2=192.5m^2$$
  • Question 9
    1 / -0
    It is proposed to add to a square lawn with each side 58 m two circular ends the centre of each circle being the point of intersection of the diagonals of the square the area of the whole lawn is

    Solution

    Let ABCD be a square with side $$58$$ metres
    Let its diagonals intersect at O


    Then $$OA=OB=OC=OD$$ and


    $$\displaystyle \angle AOD=\angle BOC=90^{\circ}$$


    With radius$$= \displaystyle \dfrac{1}{2}AC\text{ arcs have been drawn namely } AED \ and \ CBF$$


    $$\displaystyle \therefore \text{Radius of each arc}=\dfrac{1}{2}\times diagonal$$


    $$\displaystyle =\dfrac{1}{2}\sqrt{2}\times 58$$


    $$=1.41 \times 29 =40.89 metres.$$


    $$\displaystyle 58\times 58+2\times \left [ \dfrac{22}{7}\times \left ( 40.89 \right )^{2}\times \dfrac{90}{360}-\dfrac{1}{2}\times \left ( 40.89 \right )^{2}90^{\circ} \right ]$$


    $$\displaystyle 33.64+\dfrac{11\times \left ( 40.89 \right )^{2}}{7}-\left ( 40.89 \right )^{2}$$


    $$=(3364+2627.4-1671.9)$$ sq metres


    $$=4319.5$$ sq metres

  • Question 10
    1 / -0
    The area of an equilateral triangle is $$49\sqrt 3cm^2$$. Taking each angular point as centre, a circle is described with radius equal to half the length of the side of the triangle as shown in figure. Find the area of the triangle not included in the circle.       [Take $$\sqrt 3=1.73$$]

    Solution
    Area of equilateral $$\Delta ABC=49\sqrt { 3 } { cm }^{ 2 }$$
     
                            $$\dfrac { \sqrt { 3 }  }{ 4 } \times { AB }^{ 2 }=49\sqrt { 3 } { cm }^{ 2 }\Rightarrow { AB }^{ 2 }=196\Rightarrow AB=\sqrt { 196 } =14cm$$

    Now, $$\dfrac { 1 }{ 2 } AB=AF=FB=BD=DC=CE=EA$$

          $$\therefore $$ $$AF=FB=BD=DC=CE=EA=7cm$$

    Now, area of triangle not included $$=$$ $$49\sqrt { 3 } -3\times \dfrac { \theta  }{ { 360 }^{ 0 } } \times \pi { r }^{ 2 }$$

                                                              $$=$$ $$49\sqrt { 3 } -3\times \dfrac { { 60 }^{ 0 } }{ { 360 }^{ 0 } } \times \pi { r }^{ 2 }$$

                                                              $$ = 49$$$$\times $$$$1.73 - 77$$

                                                              $$= 84.77 - 77$$

                                                              $$= 7.77$$ $${ cm }^{ 2 }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now