Self Studies

Area Related to Circles Test - 24

Result Self Studies

Area Related to Circles Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A square park has each side of $$100m$$. At each corner of the park, there is a flower bed in the form of a quadrant of radius $$14m$$ as shown in figure. Find the area of the remaining part of the park.        [Use $$\pi=\displaystyle\frac{22}{7}$$]

    Solution
    Area of remaining park $$=$$ area of park $$- 4$$$$\times $$area of $$1$$ quadrant 

                                             $$={ \left( 100 \right)  }^{ 2 }-4\times \dfrac { 1 }{ 4 } \times \pi { r }^{ 2 }$$

                                           $$ = 10000 -$$ $$\dfrac { 22 }{ 7 } \times 14\times 14$$

                                           $$ = 10000 - 616$$

                                            $$= 9384$$ $${ m }^{ 2 }$$
  • Question 2
    1 / -0
    Find the area of the sector of a circle when the angle of the sector is $$\displaystyle 63^{\circ} $$ and the diameter of the circle is $$20\  cm$$.
    Solution
    Given that, diameter of the circle $$\displaystyle =20 \ cm$$
    $$\displaystyle \therefore \ $$ Radius of the circle $$\displaystyle \left ( r \right )=10 \ cm$$

    Also, angle of the sector $$\displaystyle \left ( \theta  \right )=63^{\circ}$$

    We know that, the area of a sector that subtends an angle $$\theta$$ at the centre of the circle is $$\dfrac{\theta}{360^0}\times \pi r^2$$
    where, $$\theta$$ is in degrees.
     
    $$\therefore \ $$ Area $$=\dfrac{22}{7}\times \left ( 10 \right )^{2}\times \dfrac{63}{360}\quad \quad \left[\because \ \pi=\dfrac{22}{7}\right]$$

    $$\Rightarrow \displaystyle \dfrac{22}{7}\times 100\times \dfrac{63}{360}$$

    $$\Rightarrow \displaystyle \dfrac{2200}{40}=55 \ cm^{2}$$

    Hence, the area of the sector is $$55\ cm^2$$.

  • Question 3
    1 / -0
    A sector is cut off from a circle of radius $$21$$ cm The angle of the sector is $$\displaystyle 120^{\circ} $$ The length of its arc is [Take $$\displaystyle \pi =\frac{22}{7} $$]
    Solution
    Given radius$$(r)=21cm$$ and the angle$$(\theta)=120^\circ$$

    length of arc$$=r\times \theta$$

    here $$r=21cm,$$ $$\theta=120^\circ=\dfrac{120}{360}\times 2\pi$$

    length of arc = $$\dfrac { \theta  }{ { 360 }^{ 0 } } \times 2\pi r=\dfrac { { 120 }^{ 0 } }{ { 360 }^{ 0 } } \times 2\times \dfrac { 22 }{ 7 } \times 21=44cm$$

  • Question 4
    1 / -0
    If one side of a square is 2.4 m. Then what will be the area of the circle inscribed in the square?
    Solution
    The radius of the circle inscribed in the square
    of side 2.4m
    $$\displaystyle r=\dfrac{2.4}{4}m=1.2m$$
    $$\displaystyle \therefore$$ Area of the circle $$\displaystyle =\pi r^{2}$$ square units
    $$\displaystyle =\pi \times 1.2 m\times 1.2 m$$
    $$\displaystyle =1.44 \pi m^{2}$$

    $$\displaystyle =1\dfrac{11}{25}\pi m^{2}$$
    $$\displaystyle \therefore $$ The required area $$\displaystyle =1\frac{11}{25}\pi m^{2}$$
  • Question 5
    1 / -0
    $$ABCD$$ is a square with side $$a$$. With centers, $$A, B, C$$ and $$D$$ four circles are drawn such that each circle touches externally the two of the remaining three circles. Let $$\delta$$ be the area of the region in the interior of the square that is not covered by the circles. Then the value of $$\delta $$ is:
    Solution
    Area of the shaded region $$=$$ Area of square $$-$$ Area of 1 Circle (4 quarter  = 1 circle)
    Area of Square ABCD $$= a^2$$

    radius of circle $$=\dfrac {a}{2}$$
    Area of circle $$=\pi r^2= \pi \dfrac{a^2}{4}$$

    $$\therefore$$ Area of shaded region $$=a^2-\pi \dfrac{a^2}{4}$$
                                            $$=a^2\bigg(\dfrac{4-\pi}{4}\bigg)$$
    Hence, option $$B$$ is correct.

  • Question 6
    1 / -0
    Size of a tile is $$9$$ inches by $$9$$ inches. The number of tiles needed to cover a floor of $$12$$ feet by $$18$$ feet is
    Solution
    Number of tiles$$\displaystyle =\dfrac{Area\, of\, floor}{Area\, of\, 1 tile}$$

    $$\displaystyle =\dfrac{12\times 12\times 18\times 12}{9\times 9}=384$$
  • Question 7
    1 / -0
    The portion of a circle between two radii and an arc is called  
    Solution
    Sector of a circle  is the portion of a disk enclosed by two radii and an arc. The smaller area is known as the minor sector and the larger as the major sector. 
    So option A is the correct answer.

  • Question 8
    1 / -0
    Find the area of portion between the 2 semicircles.

    Solution
    Area of small semicircle $$\displaystyle \frac { \pi { r }^{ 2 } }{ 2 } =\frac { \pi  }{ 2 } \left( \frac { 28 }{ 2 } \times \frac { 28 }{ 2 }  \right) $$
    $$\displaystyle =\frac { \pi  }{ 8 } \times { \left( 28 \right)  }^{ 2 }$$
    Area of large semicircle $$\displaystyle =\frac { { \pi r }_{ 1 }^{ 2 } }{ 2 } =\frac { \pi  }{ 2 } \left( 28\times 28 \right) $$
    Area of shaded portion =  Area (Large - Small) semicircle $$\displaystyle =\frac { \pi  }{ 2 } { \left( 28 \right)  }^{ 2 }-\frac { \pi  }{ 2 } { \left( \frac { 28 }{ 2 }  \right)  }^{ 2 }$$
    $$\displaystyle =\frac { \pi  }{ 2 } \left( { 28 }^{ 2 }-\frac { { 28 }^{ 2 } }{ 4 }  \right) $$
  • Question 9
    1 / -0
    Arc of a sector is equal to-
    Solution
    The yellow section in the above figure is called sector.
    Formula for the Arc of a Sector is given by
    $$\dfrac{\text{Sector of angle}}{360^{\circ}}\times \text{Area of circle}$$
    So, $$\text{C}$$ is the correct option.

  • Question 10
    1 / -0
    Find the area of the figure shown below

    Solution
    Area of given figure= sum of the area of 3 rectangle and 2 suares
     Area = $$(3\displaystyle \times 1) + (1\displaystyle \times 1) + (3\displaystyle \times 1) + (1\displaystyle \times 1) + (3\displaystyle \times 1)$$
    $$= 3 + 1 + 3 + 3 + 1$$
    $$= 11$$ sq cm

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now