Self Studies

Area Related to Circles Test - 25

Result Self Studies

Area Related to Circles Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In given figure, if OA = 5 cm, AB = 8 cm and OD is perpendicular to AB then CD is equal to

    Solution
    OC is perpendicular on chord AB
    $$\therefore OC$$ bisects the chord AB
    $$\Rightarrow AC=CB$$
    Now,
    $$AC+CB=AB$$
    $$\Rightarrow  AC+CB=8$$
    $$\Rightarrow AC=\frac{8}{2}$$
           $$\Rightarrow 4$$cm
    $$\triangle OCA$$ is a right angled triangle
    $$\therefore AO^2=AC^2+OC^2$$
    $$\Rightarrow  5^2=4^2+OC^2$$
    $$\Rightarrow 5^2-4^2=OC^2$$
    $$\Rightarrow OC^2=9$$
    $$\Rightarrow OC=3$$
    Since, OD is the radius of the circle
    $$\therefore OA=OD=5$$cm
    $$CD=OD-OC$$
    $$\Rightarrow 5-3=2$$cm
  • Question 2
    1 / -0
    Area of shaded figure is

  • Question 3
    1 / -0
    Tick the correct answer in the following:
    Area of a sector of angle $$\theta$$ (in degrees) of a circle with radius R is
    Solution
    Area of a sector with angle $$p$$ $$=\dfrac{\theta}{360}\times\pi R^2$$

    $$=\dfrac{\theta}{360\times2}\times\pi R^2\times2$$

    $$=\dfrac{\theta}{720}\times2\pi R^2$$

    Hence, Option $$D$$ is correct
  • Question 4
    1 / -0
    What is the area of a sector with a central angle of $$100$$ degrees and a radius of $$5$$? (Use $$\pi = 3.14$$)
    Solution
    Area = $$\dfrac{n}{360}\pi r^2$$
    = $$\dfrac{100}{360}\pi 5^2$$
    = $$6.944\pi$$
    = 21.80
  • Question 5
    1 / -0
    Find the area of a sector in radians whose central angle is $$45^o$$ and radius is $$2$$.
    Solution
    Given: $$\theta = 45^o $$ r =2

    Area of sector $$=$$ $$\dfrac{\theta}{360}{\pi}r^2$$
    $$\dfrac{45^o}{360}{\pi}2^2$$
     $$\dfrac{\pi}{2}$$
  • Question 6
    1 / -0
    Find the area of the shaded segment(in sq. units)

    Solution
                                                                           
    Area of shaded part = area sector OAPB - ar$$\Delta OAB$$
    Area sector OAPB = $$\dfrac { \theta  }{ { 360 }^{ 0 } } \times \pi { r }^{ 2 }$$

                                    = $$\dfrac { { 120 }^{ 0 } }{ { 360 }^{ 0 } } \times \dfrac { 22 }{ 7 } \times 12\times 12$$

                                    $$= 150.86$$ sq. units
    Now, area $$\Delta OAB$$
    Draw OM$$\bot $$AB, which results in two $${ 30 }^{ 0 }-{ 60 }^{ 0 }-{ 90 }^{ 0 }$$ triangles, whose sides are in ratio $$\dfrac { 1 }{ 2 } :\dfrac { \sqrt { 3 }  }{ 2 } :1$$
    $$\therefore $$ In $$\Delta OMA\Rightarrow \quad OM=\dfrac { 12 }{ 2 } =6,\quad AM=\dfrac { 12\sqrt { 3 }  }{ 2 } =6\sqrt { 3 } ,\quad OA=12$$

    $$\therefore $$ area $$\Delta OMA=\dfrac { 1 }{ 2 } \times AM\times OM=\dfrac { 1 }{ 2 } \times 6\sqrt { 3 } \times 6=18\sqrt { 3 } $$

    And area $$\Delta OAB=2\times ar\Delta OMA=2\times 18\sqrt { 3 } =36\sqrt { 3 } =62.28$$ sq. units
    $$\therefore $$ Area of shaded region $$= 150.86 - 62.28 = 88.56$$ sq.units

  • Question 7
    1 / -0
    What is the length of the arc?

    Solution
    Solution:
    Length of the arc$$=r\theta$$
    $$=11ft.\times\cfrac{315^\circ}{360^\circ}\times2\pi$$
    $$=60.5ft.$$
    Hence, C is the correct option. 
  • Question 8
    1 / -0
    Length of the arc $$DE$$ = ?

    Solution
    Arc length = $$\dfrac{\theta}{360}2 \pi r$$
    = $$\dfrac{160}{360}\times 2 \times \pi \times 8$$
    = $$22.32 m$$
  • Question 9
    1 / -0
    What is the length of the given arc?

    Solution
    Given, radius $$=12$$ km
    Arc length $$=$$ $$\dfrac{\theta}{360}2 \pi r$$
    $$=$$ $$\dfrac{135}{360}\times 2 \times \pi \times 12$$
    $$=$$ $$28.26$$ km
    Therefore, length of given arc is $$28.26$$ km.
  • Question 10
    1 / -0
    The area of a sector is $$120\pi$$ and the arc measure is $$160^o$$. What is the radius of the circle?
    Solution
    $$A_{sector}= \dfrac{n}{360}\pi r^2$$
    $$120\pi= \dfrac{160}{360}\pi r^2$$
    $$270=r^2$$
    $$r = 16.43$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now