Self Studies

Area Related to Circles Test - 29

Result Self Studies

Area Related to Circles Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area of  figure  as shown 

    Solution
    Area of rectangle $$( ABCD)=5\times 1=5m^{2}$$
    Area of rectangle $$( EFGH)=7\times 1=7m^{2}$$
    Total = $$7+5=12m^{2}$$

  • Question 2
    1 / -0
    In the given figure, $$ABC$$ is a quadrant of a circle of radius $$14\ cm$$ and a semicircle is drawn with $$BC$$ as diameter. Find the area of the shade region.

    Solution
    Area of shaded region=area of semicircle of diameter BC-{area of quadrant of radius AB/AC- area of $$\triangle$$ABC}
    $$\because$$ BC is hypotenuse of right angle $$\triangle ABC$$
    here $$AB=BC=14$$

    So, $$BC=14\sqrt2=2\times radius\Rightarrow radius=7\sqrt2$$

    So, Area of semicircle of diameter BC$$=\dfrac{\pi r^2}{2}$$

                                                                   $$=\dfrac{1}{2}\times\dfrac{22}{7}\times(7\sqrt2)^2$$

                                                                   $$=154cm^2$$    
                                            
    Area of quadrant of radius AB/AC$$=\dfrac{\pi r^2}{4}$$

                                                            $$=\dfrac{1}{4}\times\dfrac{22}{7}\times14\times14$$

                                                            $$=154cm^2$$       
                 
    Area of $$\triangle ABC=\dfrac{1}{2}\times h\times b$$

                                $$=\dfrac{1}{2}\times14\times14=98cm^2$$

    Now, area of shaded region$$=154-\{154-98\}=98cm^2$$
    Hence, area of shaded region$$=98cm^2$$
  • Question 3
    1 / -0
    From the above figure area of shade region is

    Solution
    Area of $$ABCD$$ $$={14}^{2}=196$$ sq.cm

    Area of $$APBA$$

    $$\dfrac{\pi{d}^{2}}{{8}}=\dfrac{\pi{(14)}^{2}}{8}$$ sq.cm

    $$=76.97$$ sq.cm

    Area of $$CPDC$$ $$=$$ Area of $$APBA$$

    $$=76.97$$ sq.cm

    $$\therefore$$ Area of the shaded region 

    $$=196-\left(2\times76.97\right)$$ sq.cm

    $$=42.06$$ sq.cm

    $$\sim 42$$ sq.cm

    $$Note : \left[sq.cm={cm}^{2}\right]$$

  • Question 4
    1 / -0
    The area of small square is $$100\ sq.\ cm$$. The area of the large square in $$sq.\ cm$$ is  

    Solution
    Small square area $$=100cm^2$$
    $$s^2=100\ cm^2$$
    $$s=10\ cm$$
    Diagonal of square $$=10\sqrt{2}$$
    Half the diagonal length$$=$$radius of circle $$=\dfrac{10\sqrt{2}}{2}$$
    $$=5\sqrt{2}$$
    Diameter of circle$$=$$length of side of big square=diagonal of smaller square =$$ 10\sqrt{2}$$
    Area of big square$$=(10\sqrt{2})^2$$
    $$=200\ cm^2$$.
  • Question 5
    1 / -0
    If the perimeter and the area of a circle are numerically equal, then the radius of the circle is
    Solution
    Given,
    Numerically perimete of the circle is equal to area of circle

    $$\Rightarrow 2\pi r=\pi r^2$$

    $$\Rightarrow 2=r$$

    $$\therefore r=2$$
  • Question 6
    1 / -0
    In the given figure $$ABCDE$$ is a pentagonal park in which $$DE=DC,AB=BC=CE=EA=25m$$ and its total height is $$41m$$. Find the area of the park

    Solution
    Height of triangle $$=41-25 =16cm $$
    Area of park $$=$$ area of square $$ABCE \,+$$ area of $$\Delta DEC$$
                          $$= 25\times 25+\dfrac{1}{2}\times  25 \times 16 $$
                          $$=625+200$$
                          $$=825cm^{2}$$
  • Question 7
    1 / -0
    The length of the are that subtends an angle $${30}^{o}$$ at the centre of a circle of radius $$4\ cm$$:
    Solution
    Length of arc $$ = (\dfrac{\theta }{360}\times 2\pi r)\,cm $$
    $$ \therefore $$ Length $$ = (\dfrac{30}{360}\times 2\times \dfrac{22}{7}\times 4)\,cm $$
    $$ \therefore $$ Length $$ = (\dfrac{1}{6}\times \dfrac{22\times 4}{7})\,cm  $$
    $$ \therefore $$ Length $$ = \dfrac{44}{21}\,cm $$
    $$ \therefore $$ Length $$ = 2.09\,cm $$
    $$ = (\dfrac{2\pi }{3})\,cm $$ 
  • Question 8
    1 / -0
    Find the area of the shaded region.

    Solution
    $$r+2r+r=42$$

    $$4r=42$$

    $$r=\dfrac{21}{2}cm$$

    Area of shaded region = $$4\times \dfrac{\pi r^2}{2}+(2r)(2r)$$

    $$=2\pi r^2+4r^2$$

    $$2\times \dfrac{22}{7}\times \dfrac{21}{2}\times \dfrac{21}{2}+4\times\dfrac{21}{2}\times \dfrac{21}{2}$$

    $$=33\times 21+21\times 21$$

    $$=54\times 21$$

    $$=1134 cm^2$$

  • Question 9
    1 / -0
    The area of shaded region of the figure given below is __________. [Take $$\pi = \dfrac {22}{7}$$ and $$\sqrt {3} = 1.732]$$.

    Solution
    Area of sector $$OAB = \dfrac{\theta}{360^{\circ} } \times \pi r^2$$

    where $$\theta = \angle AOB$$

    Since $$\Delta AOB $$ is an equilateral triangle 
    $$\therefore \angle AOB = 60^{\circ}$$

    $$\therefore$$ Area of sector $$OAB = \dfrac{60^{\circ}}{360^{\circ}} \times \pi \times 6^2$$

                                           $$= \dfrac{1}{6} \times \dfrac{22}{7} \times 6^2$$

                                           $$= 18.85 cm^2$$
     
    Area of equilateral triangle $$OAB$$

    $$= \dfrac{\sqrt{3}}{4} a^2$$

    $$= \dfrac{\sqrt{3}}{4} \times 6 \times 6$$

    $$= 9 \sqrt{3} cm^2$$

    $$= 15.58 cm^2$$

    Area of shaded region $$= (18.85 - 15.58) cm^2$$
                                           $$= 3.27 cm^2$$ 

    Answer: $$C) \, 3.27 cm^2$$

  • Question 10
    1 / -0
    A chord of a circle of radius $$6\ cm$$ subtends a right angle at centre. The area of the minor segment $$(\pi=3.14)$$ is____.

    Solution
    $$\text{Area of the minor segment}$$ $$= \text{Area}(Sector\; OACB) - \text{Area}(\triangle AOB)$$

    $$= \dfrac{90^{\circ}}{360^{\circ}} \times \pi \times r^2 - \dfrac{1}{2} \times OA\times OB$$

    $$= \dfrac{90^{\circ}}{360^{\circ}} \times 3.14 \times6^2 - \dfrac{1}{2} \times 6\times 6$$

    $$= 28.26 - 18$$

    $$= 10.26 \text{ cm}^2 $$

    Option C is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now