Self Studies

Statistics Test - 27

Result Self Studies

Statistics Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given the following distribution table:
    Class
    $$0-5$$
    $$5-10$$
    $$10-15$$
    $$15-20$$
    $$20-25$$
    Frequency
    $$10$$
    $$15$$
    $$12$$
    $$20$$
    $$9$$
    The sum of lower limits of the Median class and the Modal class is:
    Solution
    Answer:-
    The cumulative frequency Table is:-

     ClassFrequency Cumulative frequency 
     0-5 10 10
     5-10 15 25
     10-15 12 37
     15-20 20 57
     20-25 9 66
    Here, $$ \cfrac{N}{2} = \cfrac{66}{2} = 33 $$
    Thus $$37$$ is just greater than $$33$$, 
    $$\therefore$$ The median class is "$$10-15.$$"
    The lower limit of the median class is 10.
    Modal class = class with maximum frequency.
    $$ \therefore $$ Modal class is $$15-20.$$
    The lower limit of the modal class is $$15$$.
    Sum of lower limits of median class and modal class = $$10 + 15 = 25$$


  • Question 2
    1 / -0
    If the median of the distribution is $$28.5$$, find thevalues of $$x_1$$ and $$x_2$$
    Class interval
    Frequency
    0-10
    5
    10-20
    $$x_1$$
    20-30
    20
    30-40
    15
    40-50
    $$x_2$$
    50-60
    5

    Total $$=$$ 60

    Solution
    Answer:-

     Class IntervalFrequency 
    (F)
     Cumulative frequency
    (C. F.)
     0-10 5 5
     10-20 $$ x_1 $$ 5 + $$x_1$$
     20-30 20 25 + $$x_1$$
     30-40 15 40 + $$x_1$$
     40-50 $$ x_2 $$ 40 + $$ x_1 + x_2 $$
     50-60 5 45 + $$ x_1 + x_2 $$
     Total 60 
    Given:- $$ \Sigma F = 60 $$
    $$ \therefore x_1 + x_2 + 45 = 60 $$
    $$ \Rightarrow x_1 + x_2 = 15 \longrightarrow eq. (i) $$
    Given: - Median = $$28.5$$
    Using media:- $$ L + \cfrac{\cfrac{N}{2} - C}{f} \times w $$
    Where $$L$$ is lower limit of class $$20-30$$
    $$f$$ is frequency of class $$20-30,$$
    $$w$$ is width of class
    $$C$$ is cumulative frequency of previous class and$$ N$$ = $$\Sigma F$$
    $$ \Rightarrow $$ $$L= 20$$, $$ \cfrac{N}{2} = \cfrac{60}{2} $$ = $$30$$, $$C =  x_1 + 5 ,$$ $$w = 30 - 20 = 10$$, $$f = 20$$
    $$ \Rightarrow M = 20 + \cfrac{30 - (x_1 + 5)}{20} \times 10 $$
    $$ 28.5 = 20 + \cfrac{25 - x_1}{20} \times 10 $$
    $$ 8.5 = \cfrac{25 - x_1}{2} $$
    $$ x_1 = 8$$
    From eq. (i), we get 
    $$ x_1 + x_2 = 15 $$
    $$ 8 + x_2 = 15 $$
    $$ x_2 = 7$$
    $$\therefore $$ value of $$ x_1 \& x_2 $$ are $$8$$ and $$7$$ respectively.


  • Question 3
    1 / -0
    If $$x_i$$'s are the mid points of the class intervals of grouped data, $$f_1$$'s are the corresponding frequencies and $$\bar x$$ is the mean, then $$\sum (f_i x_i - \bar x)$$ is equal to
    Solution
    Given that, $$x_i$$ are the mid points of the class intervals.
    $$f_i$$ are the corresponding frequencies.
    The mean $$\bar x$$ for the grouped data is $$\bar x=\dfrac{\sum f_ix_i}{n}$$

    $$\implies \bar xn=\sum f_ix_i$$ ------(1)

    $$\sum (f_ix_i-\bar x)=\sum f_ix_i-\sum \bar x$$

    $$\implies \sum (f_ix_i-\bar x)=\bar xn-\sum \bar x$$ (from (1))

    $$\implies \sum (f_ix_i-\bar x)=\bar xn-\bar xn=0$$
  • Question 4
    1 / -0
    If the sum of the mode and mean of the certain frequency distribution in $$129$$ and the median of the observations is $$63$$, mode and mean are respectively
    Solution
    Given, Mode$$+$$ Mean $$=$$ 129 .....(1)
    and Median $$=63$$,
    Also we know, Mode $$=$$ 3. Median $$-$$ 2.  Mean
    $$\Rightarrow$$ Mode$$=3\times 63-2.$$ Mean $$=189-2.$$Mean  ..(2)
    Solving (1) and (2) we get, Mean$$=60$$ and Mode $$=69$$.
  • Question 5
    1 / -0
     Family size $$1-3$$ $$3-5$$ $$5-7$$ $$7-9$$$$9-11$$ 
     No. of families $$14$$ $$16$$ $$4$$ $$4$$ $$2$$
    A survey conducted on $$40$$ households in a locality by a group of students resulted in the following frequency table for the number of family members in a household -
    Find the mode of this data

    Solution
    Here the maximum class frequency is $$16$$, and the class corresponding to this frequency is $$3-5$$. So, the modal class is $$3-5$$. 

    Now, in the modal class $$3-5$$, lower limit of the modal class is $$(l)=3$$,

    class size $$(h)=$$ 2, frequency of the modal class $$(f_1)=16$$,

    frequency of class preceding the modal class $$(f_0)=14$$,

    frequency of class succeeding the modal class $$(f_2) = 4$$,

    Substituting these values in the formula, we have
    $$Mode = \displaystyle l + \left ( \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right ) \times h$$

    $$= 3 + \displaystyle \left ( \frac{16-14}{2 \times 16 - 14 - 4} \right ) \times 2 \\= 3 + \left ( \dfrac{2}{14} \right ) \times 2  \\= 3 + \dfrac{4}{14} \\= 3.29$$
  • Question 6
    1 / -0
    If in a moderately skewed distribution the values of mode and mean are $$6\lambda$$ and $$9\lambda$$ respectively, then the value of the median is
    Solution
    Using,  Mode $$=$$ 3. Median $$-$$ 2. Mean
    $$\Rightarrow 6\lambda =$$ 3.Median $$-2.9\lambda$$
    $$\therefore$$ Median $$= 8 \lambda$$
  • Question 7
    1 / -0
    In a distribution the values of mean and median are $$5$$ and $$6$$ respectively. The value of mode in such a situation is approximately equal to
    Solution
    Relationship between mean, mode and median is given by:
    $$mode = 3\times (median) - 2 \times( mean)$$
    Given, mean $$=5$$ and median $$ = 6$$
    $$\therefore mode = 3\times (median) - 2 \times( mean) $$ 
    $$= 3(6)-2(5)$$
    $$=8$$
  • Question 8
    1 / -0
    If the difference between the mode and median is $$2$$, then the difference between the median and mean (in the given order) is?
    Solution

    We know that, Mode $$=3\times$$Median $$- 2\times$$Mean
    $$\Rightarrow$$ Mode $$-$$ Median $$= 2\times($$Median $$-$$ Mean$$)$$

    $$\Rightarrow 2=2\times($$Median $$-$$ Mean$$)$$
    $$\therefore$$ Median $$-$$ Mean $$= 1$$


    Hence option (C) is correct

  • Question 9
    1 / -0
    The median class in the following frequency distribution is:
    Class Interval:0-1010-2020-3030-4040-50
    Frequency1213252010
    Solution
     
     Class Frequency Cumulative Frequency
     0-10 12 12
     10-20 13 25
     20-30 25 50
     30-40 20 60
     40-50 10 70

    Now $$\dfrac{N}{2}=35$$. Hence cumulative frequency just greater than $$35$$ is $$50$$. The corresponding class is $$20-30$$.

  • Question 10
    1 / -0
    The mode of the following distribution is
    Class Interval:1-56-1011-1516-2021-25
    Frequency:471086

    Solution
    Modal group = 11-15 , since it has the highest frequency i.e $$10$$.
    Estimated Mode $$M=L+\dfrac{f_m-f_{{m-1}}}{f_m-f_{m-1}+f_m-f_{m+1}}\times w$$

    Lower class boundary of modal group $$L=10.5$$
    Frequency of group before the modal group $$f_{m-1}=7$$
    Frequency of Modal group $$f_m=10$$
    Frequency of group after the modal group $$f_{m+1}=8$$
    Group width $$w=5$$

    $$\therefore M= 10.5 + \dfrac{10-7}{10-7+10-8}\times 5$$
             $$=10.5+\dfrac{3}{5}\times5$$
             $$=13.5$$
    hence, option $$D$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now