Self Studies

Statistics Test - 29

Result Self Studies

Statistics Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Below is given distribution of profit (in Rs.) per day of a shop in a certain town.
    Calculate median profit of shops.
    Profit (in Rs.)500 - 10001000 - 15001500 - 20002000 - 25002500 - 30003000 - 35003500 - 4000
    No. of shops

    818272120188
    Solution
    Consider the following table, to calculate median:
     $$c_i$$ $$f_i$$ $$cf$$
     500-1000 8 8
     1000-1500 18 8+18=26
     1500-2000 27 26+27=53
     2000-2500 21 53+21=74
     2500-3000 20 74+20=94
     3000-3500 18 94+18=112
     3500-4000 8 112+8=120
    Median $$=l +\dfrac {(\dfrac{N}{2}-cf)}{ f_m}\times c$$
    Here, 
    Class Interval $$c=500$$
    $$N=\Sigma f_i=120$$   
    $$\dfrac {N}{2}=60  $$
    $$\Rightarrow$$ Median class $$=2000-2500$$
    $$\Rightarrow$$Frequency of median class$$ f_m=21$$
    Lower boundary of median class $$l=2000$$
    previous cumulative frequency of median class $$cf=53$$

    $$\therefore$$ Median $$=2000 +\dfrac {(\dfrac{120}{2}-53)}{ 21}\times 500$$

    $$\therefore$$ Median $$=2000 +\dfrac {(7)}{ 21}\times 500$$

    $$\therefore$$ Median $$=2166.67 \Rightarrow 2167$$ 
    Hence. option $$C$$ is correct.
  • Question 2
    1 / -0
    The relation between Mean, Median and Mode for a moderately skewed distribution is 
    Solution


    $$Mode = 3 Median - 2 Mean$$


  • Question 3
    1 / -0
    If the mode and mean of a moderately asymmetrical series are $$16$$  inches and  $$15.6$$  inches respectively, then most probable median is
    Solution
    Here mode $$=16$$ and mean $$=15.6$$
    Now using,  mode $$=$$ 3. median $$-$$ 2.mean
    $$\Rightarrow $$ median $$=\cfrac{\mbox{mode}+2.\mbox{mean}}{3}=\cfrac{16+2 \times 15.6}{3}=\cfrac{47.2}{3}=15.73$$  
  • Question 4
    1 / -0
    If the mean of the distribution
    $$\begin{matrix}
    Variate & 6 & 7 & 1.9 & 9 & 10\\
    Frequency & 1 & 2 & k & 3 & 4
    \end{matrix}$$
    is $$3.6$$
    the value of $$ k$$ is equal
    Solution
    Mean $$\displaystyle =\frac{1\times 6+7\times 2+1.9\times k+9\times 3+10\times 4}{1+2+k+3+4}=3.6$$

         $$\Rightarrow \displaystyle \frac{87+1.9k}{k+10}=\frac{3.6}{1}$$  $$\Rightarrow $$   $$k=30$$

  • Question 5
    1 / -0
    Marks obtained by 40 students of a class are shown as ,
    Marks above
    10
    20
    30
    40
    50
    60
    70
    80
    Number of students
    40
    34
    26
    $$f_{1}$$
    6
    $$f_{2}$$
    1
    0
    the mean of the distribution estimated as 35.75, the respective values of $$f_{1}$$ and $$f_{2}$$ are, if $$f_{1}\::\:f_{2}\:=\:3:1$$
    Solution
    Answer:-
    Given:-
    $$\Sigma f_i =40$$, Mean $$= 35.75$$
    Converting the given table into frequency distribution table with class interval of width 10 we get:
     MarksNo. of 
    students
    $$f_i$$ 
    $$x_i$$ $$f_i.x_i$$ 
    10-20  40-34=6 1590 
    20-30  34-26=825  200
     30-4026-$$f_1$$ 35 $$910-35f_1$$ 
    40-50  $$f_1-6$$45 $$45f_1-270$$ 
     50-60$$6-f_2$$  55$$330-55f_2$$ 
    60-70  $$f_2-1$$ 
     65$$ 65f_2-1$$
     70-80 1-0=175  75
     80-90 0-0=0 85 0
      $$\Sigma f_i = 40$$ $$\Sigma f_i.x_i = 1270+10f_1+10f_2$$ 
    Mean = $$\cfrac{\Sigma f_i.x_i}{\Sigma f_i}\;=\cfrac{1270+10f_1+10f_2}{40}=35.75$$
    $${1270+10f_1+10f_2}=1430$$
    $$10f_1+10f_2=160$$
    $$f_1+f_2=16 \longrightarrow eq^n \left(i\right)$$
    Given:- $$\cfrac{f_1}{f_2}=\cfrac{3}{1} \Rightarrow f_1=3f_2 \longrightarrow \left(ii\right)$$
    From $$\left(i\right) and \left(ii\right)$$, we get:
    $$3f_2+f_2=16$$
    $$4f_2=16$$
    $$f_2=\cfrac{16}{4}$$
    $$f_2=4$$
    $$f_1=3f_2=3\times 4=12$$

  • Question 6
    1 / -0
    Find the median from the following table.
    Marks scoredbelow 20below 40below 60below 80below 100
    Number students610203650
    Solution
    Frequency distribution table:
     $$ci$$ $$f_i$$ $$cf$$
     $$0-20$$ $$6$$ $$6$$
     $$20-40$$ $$10-6=4$$ $$10$$
     $$40-60$$ $$20-10=10$$ $$20$$
     $$60-80$$ $$36-20=16$$ $$36$$
     $$80-100$$ $$50-36=14$$ $$50$$
    Median $$=l +\dfrac {\bigg(\dfrac{N}{2}-cf\bigg)}{ f_m}\times c$$
    Here, 
    Class Interval $$c=20$$
    $$N=\Sigma f_i=50$$   
    $$\dfrac {N}{2}=25$$
    $$\Rightarrow$$ Median class $$=60-80$$
    $$\Rightarrow$$Frequency of median class$$ f_m=16$$
    Lower boundary of median class $$l=60$$
    previous cumulative frequency of median class $$cf=20$$

    $$\therefore$$ Median $$=60+\dfrac {(\dfrac{50}{2}-20)}{ 16}\times 20$$

    $$\therefore$$ Median $$=60+\dfrac {(5)}{ 16}\times 20$$

    $$\therefore$$ Median $$=66.25 \approx 66$$
    Hence. option $$C$$ is correct.
  • Question 7
    1 / -0
    For a certain frequency distribution, the value of Mean is $$ 101 $$and Median is $$ 100$$. Find the value of Mode.
    Solution
    Mode= 3 Median - 2 Mean
             $$=( 3\times100 ) - ( 2\times101 )$$
             $$=98$$
  • Question 8
    1 / -0
    For a certain frequency distribution, the values of Mean and Mode are $$54.6$$ and $$54$$ respectively. Find the value of median.
    Solution
    Median = Mode $$+\dfrac23$$(Mean - Mode)
    Median $$=54+\dfrac23(54.6-54)$$
    Median $$=54+0.4$$
    Median $$=54.4$$
  • Question 9
    1 / -0
    Forty persons were examined for their Haemoglobin % in blood (in mg per 100 ml) and the results were grouped as below :
    Determine modal value of Haemoglobin % in blood of persons.
    Haemoglobins % (mg / 100ml)13.1 - 1414.1 - 1515.1 - 1616.1 - 1717.1 - 18
    No. of Persons8121064
    Solution
    Consider the following table to calculate mode:
     $$ci$$ $$f_i$$
     13.05-14.05 8
     14.05-15.05 12
     15.05-16.05 10
     16.05-17.05 6
     17.05-18.05 4
    $$Mode=l+\bigg ( \dfrac{f_1-f_0}{2f_1-f_0-f_2} \bigg )\times h$$
    Here,
    maximum frequency $$f_1=12$$
    $$\Rightarrow$$ modal class $$=14.05-15.05$$
    lower limit of modal class $$l=14.05$$    
    class size $$h=1$$
    preceding frequency of modal class $$f_0=8$$
    succeeding frequency of modal class $$f_2=10$$
    $$\therefore Mode=14.05+\bigg ( \dfrac{12-8}{24-8-10} \bigg )\times 1$$
    $$\therefore Mode=14.05+\bigg ( \dfrac{4}{6} \bigg )\times 1$$
    $$\therefore Mode=14.71$$
    Hence, option $$B$$ is correct.
  • Question 10
    1 / -0
    For a certain frequency distribution, the values of Median and Mode are $$95.75$$ and $$95.5$$ respectively. Find the Mean.
    Solution
    Empirical relation between mean,median & mode is as:
    $$Mode=3Median-2Mean$$
    $$\therefore Mean = \dfrac{1}{2}[3Median-Mode]$$

    $$\therefore Mean = \dfrac{1}{2}[3(95.75)-95.5]$$

    $$\therefore Mean = \dfrac{1}{2}[191.75]$$

    $$\therefore Mean = 95.875$$
    hence, option $$C$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now