Self Studies

Statistics Test - 32

Result Self Studies

Statistics Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Below is given frequency distribution of no. of packages received at a post office per day.
    No. of packages10 - 2020 - 3030 - 4040 - 5050 - 6060 - 70
    No. of days2816243020
    Find modal number of packages received by the post office per day.
    Solution
    The modal group is 50 - 60

    Estimated Mode = $$L +  (\frac{f_{m} - f_{m-1}}{(f_{m} - f_{m-1}) + (f_{m}  -f_{m+1})}) \times w$$
    where:
    L is the lower class boundary of the modal group
    $$f_{m-1}$$ is the frequency of the group before the modal group
    $$f_{m}$$ is the frequency of the modal group
    $$f_{m+1}$$ is the frequency of the group after the modal group
    w is the group width

    Estimated Mode = $$L +  (\frac{f_{m} - f_{m-1}}{(f_{m}  -f_{m-1}) + (f_{m} -f_{m+1})}) \times w$$
    Mode = $$50 + (\frac{30 - 24}{(30 - 24) + (30 - 20)})\times 10$$
    Mode = $$50 + (\frac{6}{16})\times 10$$
    Mode =$$ 53.75$$
  • Question 2
    1 / -0
    Below is given frequency distribution of I.Q. (Intelligent Quotient) of 80 candidates.
    I.Q.70 - 8080 - 9090 - 100100 - 110110 - 120120 - 130130 - 140
    No. of Candidates71620171172
    Find median I.Q. of candidates
    Solution
    There are total 80 candidates. Hence, the median will be the mean of 40th and 41st candidate. Both of which lie in the interval 90-100
    The median of grouped data is given by:

    Median $$ L + ( \cfrac{\frac{n}{2} -  cf_{b}}{f_{m}} )\times w$$

    where:
    L is the lower class boundary of the group containing the median
    n is the total number of data
    $$cf_{b}$$ is the cumulative frequency of the groups before the median group
    $$f_{m}$$ is the frequency of the median group
    w is the group width

    Hence, 
    Median =  $$ 90 + ( \cfrac{\dfrac{80}{2}  -  23}{20} )\times 10$$
    Median =  $$ 90 + ( \cfrac{17}{20} )\times 10$$
    Median =  $$ 90 + 8.5$$
    Median =  $$ 98.5$$
  • Question 3
    1 / -0
    Following s the frequency distribution of diameter of neem trees measured at 1 meter height from ground
    Diameter (in cm)Number of trees
    Below 250
    Below 5026
    Below 7568
    Below 100203
    Below 125215
    Below 150220
     Find the median.
  • Question 4
    1 / -0
    Find the median of the following data:
    $$5, 7, 9, 11, 15, 17, 2, 23$$ and $$19$$
    Solution
    Median is middle score in the ordered data.
    Here given data is $$5,7,9,11,15,17,2,23,19$$.
    Arranging them in order, we have
    $$2, 5, 7, 9, 11, 15,17,19,23$$
    Middle score is $$11$$.
    Hence, median is $$11$$.
  • Question 5
    1 / -0
    Following table gives frequency distribution of time (in minutes) taken by a person in watching T.V. on a day.
    Time (in min)30 - 4040 - 5050 - 6060 - 7070 - 8080 - 9090 -
    100
    No. of persons461914872
    Obtain modal time taken for watching a T.V. by persons on a day.
    Solution
    The modal group is $$50 - 60$$.

    Estimated Mode $$=$$ $$L +  \left(\dfrac{f_{m} - f_{m-1}}{\left(f_{m} - f_{m-1}\right) + \left(f_{m} - f_{m+1}\right)}\right) \times w$$
    where:
    $$L$$ is the lower class boundary of the modal group $$= 50$$
    $$f_{m-1}$$ is the frequency of the group before the modal group $$=6$$
    $$f_{m}$$ is the frequency of the modal group $$=19$$
    $$f_{m+1}$$ is the frequency of the group after the modal group $$=14$$
    $$w$$ is the group width $$=10$$

    Estimated Mode $$=$$ $$L +  \left(\cfrac{f_{m} - f_{m-1}}{\left(f_{m} - f_{m-1}\right) + \left(f_{m} - f_{m+1}\right)}\right) \times w$$
    Mode $$=$$ $$50 + \left(\cfrac{19 - 6}{\left(19 -6\right) + \left(19- 14\right)}\right)\times 10$$
    Mode $$=$$ $$50 + \left(\cfrac{13}{18}\right)\times 10$$
    Mode $$= 57.22$$
  • Question 6
    1 / -0
    An automatic filling machine was tested for its performance. A sample of 100 filled packets generated the data, which is classified as follows :
    Weight (in gm)485 - 490490 - 495495 - 500500 - 505505 - 510510 - 515
    No. of packets12182022244
    Draw histogram and hence find the mode of the weight of packets.
    Solution
     Weight  $$485-490$$ $$490-495$$$$495-500$$ $$500-505$$$$505-510$$  $$510-515$$
     no of packets $$12$$ $$18$$$$20$$ $$22$$ $$24$$ $$4$$
    Mode $$\approx 505.45$$

  • Question 7
    1 / -0
    A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are only given to persons having age 18 years onwards but less than 60 years.
    Age in years
    No. of policy holders
    Below 20
    2
    Below 25
    6
    Below 30
    24
    Below 35
    45
    Below 40
    78
    Below 45
    89
    Below 50
    92
    Below 55
    98
    Below 60
    100
    Solution
     Class IntervalNo. of policy Holders
    Freq (Fi) 
    XI 
     18 to 20 2 2
     20 to 25 4 6
     25 to 30 18 24
     30 to 35 21 45
     35 to 40 33 78
     40 to 45 11 89
     45 to 50 3 92
     50 to 55 6 98
     55 to 60 2 100
      $$N = 100$$ 
    For continuous data, median
    $$=\quad L\quad +\quad \left( \frac { \frac { N }{ 2 } -C }{ f }  \right) \quad \times \quad H\\$$ 
    Where $$N$$ = Total cumulative frequency
    $$ L$$ = lower limit of the median class Interval; 
    Median Class = the class interval having cumulative 
    $$freq \ge \quad \cfrac { N }{ 2 }$$ 
    $$ C=$$ cumulative frequency of the class interval just before the median class interval
    $$ f =$$ frequency of the median class interval; 
    $$H =$$ width of the median class interval
    Here $$ N=100\\ \cfrac { N }{ 2 } =50$$
    this cumulative freq lies within interval $$ \left( 35-40 \right) ;\\ L=35\quad ;C=45\quad ;f=33;\quad H=5$$
    Hence median $$=\quad 35+\left( \cfrac { \cfrac { 100 }{ 2 } -45 }{ 33 } \times 5 \right) =\quad 35+\left( \cfrac { 50-45 }{ 33 } \times 5 \right) =\quad 35+\left( \cfrac { 25 }{ 33 }  \right) =\quad 35+0.7575=\quad 35+.76=\quad 35.76
    $$
  • Question 8
    1 / -0
    If the median of the following data is 40 then the value of p is
    Class
    0-10
    10-30
    30-60
    60-80
    80-90
    Frequency
    5
    15
    30
    p
    2
    Solution
    Median=$$L+\frac{(\frac{n}{2})-cfb}{fm}\times w$$
    Where,
    L=is the lower class boundary of the group containing the median.
    n=the total number of data.
    cfb=the cummulative frequency of the groups before the median group.
    fm=the frequency of the median group.
    w=group width
    Classfrequencycf
    $$0-10$$
    $$5$$$$5$$
    $$10-30$$$$15$$$$20$$
    $$30-60$$$$30$$$$50$$
    $$60-80$$$$p$$$$50+p$$
    $$80-90$$$$2$$$$52+p$$

    total $$n=55+p$$




    Here,
    $$\frac{n}{2}=\frac{52+p}{2}$$
    Median m=$$40$$,is in $$30-60$$ class.
    Therefore,
    $$l=30, cfb=20, w=30, fm =30$$
    Therefore,
    Median=$$L+\frac{(\frac{n}{2})-cfb}{fm}\times w$$
    $$40=L+\frac{(\frac{52+p}{2})-20}{30}\times 30$$
    $$=>10=\frac{52+p}{2}-20$$ 
    $$=>30\times 2=52+p$$
    $$=>p=8$$          
  • Question 9
    1 / -0
    The median for the following distibution class
    Class0-1010-2020-3030-4040-5050-60
    Frequency51020785
    is
    Solution
    Answer:-
    Taking cumulation frequency(C. F.)

     Class Frequency Cumulative frequency
     0-10 5 5
     10-20 10 15
     20-30 20 35
     30-40 7 42
     40-50 8 50
     50-60 5 55
    N = 55 $$\Rightarrow \cfrac{N}{2} = \cfrac{55}{2} = 27.5 $$
    35 is greater than 27.5
    $$ \therefore $$ Median class is 20-30.
    Now, median = $$ L + \cfrac{\cfrac{N}{2} - C}{f} \times w $$
    L = lower limit of median class
    f = fraquency of median class
    w = width of median class
    C = C.F. of previous class
    $$ \cfrac{N}{2} = 27.5 $$, L = 20, f = 20, C = 15, w = 30 - 20 = 10
    Median = $$ L + \cfrac{\cfrac{N}{2} - C}{f} \times w $$
    Median = $$ 20 + \cfrac{27.5 - 15}{20} \times 10 $$
    = $$ 20 + \cfrac{12.5}{20} \times 10 $$
    = $$20 + 6.25 = 26.25$$
  • Question 10
    1 / -0
    $$100$$ surnames were randomly picked up from a local telephone directry and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows
    No. of letters
    $$1-4$$
    $$4-7$$
    $$7-10$$
    $$10-13$$
    $$13-16$$
    $$16-19$$
    No. of surnames
    $$6$$$$30$$
    $$40$$
    $$16$$
    $$4$$
    $$4$$
    Find the median and mean number of letters in the surnames.
    Solution
    Answer:-

     No. of lettersNo. of surnames
    $$ (f_i) $$ 
     C.F. $$ X_i $$$$ x_if_i$$ 
     $$1-4$$ $$6$$ $$6$$ $$2.5$$ $$15$$
    $$4-7$$  $$30$$$$36$$ $$5.5$$ $$165$$
     $$7-10$$ $$40$$$$76$$  $$8.5$$ $$340$$
     $$10-13$$ $$16$$$$92$$  $$11.5$$ $$184$$
     $$133-16$$ $$4$$ $$96$$ $$14.5$$ $$58$$
     $$16-19$$ $$4$4 $$100$$ $$17.5$$ $$70$$
      $$ \Sigma f_i = 100 $$  $$ \Sigma x_i f_i = 832 $$ 
    Mean = $$ \cfrac{832}{100} = 8.32 $$
    $$ \cfrac{N}{2} = \cfrac{100}{2} = 50 $$
    76 is greater than 50. $$ \therefore $$ Median class is $$7-10.$$
    $$ \therefore Median = L + \cfrac{\cfrac{N}{2} - C}{f} \times w $$
    L = Lower limit of median class $$= 7$$
    C = C.F. of previous class $$= 36$$
    f = frequency of median class $$= 40$$
    w = width of median class = upper limit - lower limit $$= 10 - 7 = 3$$
    Median  $$= 7 + \cfrac{50 - 36}{40} \times 3 $$
     $$= 7+ \cfrac{14}{40} \times 3 $$
     $$= 7 + \cfrac{42}{40} = 7 + 1.05 = 8.05 $$
    C) Mean $$= 8.32$$ $$\&$$ Median $$= 8.05$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now