Frequency distribution table:
$$ci$$ | $$f_i$$ | $$cf$$ |
$$0-10$$ | $$f_1$$ | $$f_1$$ |
$$10-20$$ | $$5$$ | $$5+f_1$$ |
$$20-30$$ | $$9$$ | $$14+f_1$$ |
$$30-40$$ | $$12$$ | $$26+f_1$$ |
$$40-50$$ | $$f_2$$ | $$26+f_1+f_2$$ |
$$50-60$$ | $$3$$ | $$29+f_1+f_2$$ |
$$60-70$$ | $$2$$ | $$31+f_1+f_2$$
|
Median $$=l +\dfrac {\bigg(\dfrac{N}{2}-cf\bigg)}{ f_m}\times c$$
Here,
Class Interval $$c=10$$
$$N=\Sigma f_i=31+f_1+f_2$$
$$N=\Sigma f_i=40$$ ....(given)
$$\therefore 40=31+f_1+f_2$$
$$\therefore f_2=9-f_1$$ ....(1)
Median $$=32.5$$
$$\Rightarrow$$ Median class $$=30-40$$
$$\Rightarrow$$Frequency of median class$$ f_m=12$$
Lower boundary of median class $$l=30$$
previous cumulative frequency of median class $$cf=14+f_1$$
$$\therefore 32.5$$ $$=30+\dfrac {\bigg(\dfrac{31+f_1+f_2}{2}-(14+f_1)\bigg)}{ 12}\times 10$$
$$\therefore 32.5$$ $$=30+\dfrac {(3-f_1+f_2)}{ 12}\times 5$$
$$\therefore 32.5$$ $$=\dfrac{360+15-5f_1+5f_2}{12}$$
$$\therefore 390-375=-5f_1+5f_2$$
$$\therefore -5f_1+5f_2=15$$
$$\therefore -f_1+f_2=3$$ ....(2)
substituting (1) in (2), we have
$$-f_1+(9-f_1)=3$$
$$-2f_1=-6$$
$$\therefore f_1 =3$$
substituting in $$f_1 =3$$ in (2), we get
$$-3+f_2=3$$
$$\therefore f_2=6$$
Hence, option $$A$$ is correct.