Self Studies

Statistics Test - 33

Result Self Studies

Statistics Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mean of the following data is $$18.75$$ then the value of $$p$$ :
    Class mark $$(x_i)$$
    $$10$$
    $$15$$
    $$p$$
    $$25$$
    $$30$$
    Frequency $$(f_i)$$
    $$5$$
    $$10$$
    $$7$$
    $$8$$
    $$2$$
    Solution
    Frequency distribution table:
     $$x_i$$$$f_i$$$$f_ix_i$$ 
     $$10$$$$5$$$$50$$ 
     $$15$$$$10$$$$150$$
     $$p$$$$7$$$$7p$$ 
     $$25$$$$8$$ $$200$$ 
     $$30$$$$2$$ $$60$$ 
    $$N=\displaystyle  \sum f_i=32$$          
    $$\displaystyle  \sum f_ix_i=460+7p$$

    Mean $$\displaystyle \overline x=\dfrac {\sum f_ix_i}{N}$$
    $$\Rightarrow 18.75=\dfrac{460+7p}{32}$$
    $$\Rightarrow 600 =460+7p$$
    $$\Rightarrow  p=\dfrac{600-460}{7}$$
    $$\Rightarrow  p =20 $$

    Hence, option $$C$$ is correct.
  • Question 2
    1 / -0
    The median and mode of a frequency distribution are 525 and 500 then mean of same frequency distribution is-
    Solution
    Median $$=525$$ , Mode $$=500$$
    We have, Mode$$ =$$ 3 median $$-$$2 mean
    $$\Rightarrow$$ $$500 = 3(525) - 2$$ mean
    $$\Rightarrow$$ 2 mean $$=1575 -500$$
    $$\Rightarrow mean =\dfrac{1075}{2} =537.5$$
    Hence, option 'D' is correct.
  • Question 3
    1 / -0
    The mode of the following data is $$85.7$$. Find the missing frequency in it.
    Size
    Frequency
    45-55
    7
    55-65
    12
    65-75
    17
    75-85
    f
    85-95
    32
    95-105
    6
    105-115
    10
    Solution
    Frequency distribution table:
     $$ci$$ $$f_i$$
     $$45-55$$ $$7$$
     $$55-65$$ $$12$$
     $$65-75$$ $$17$$
     $$75-85$$ $$f$$
     $$85-95$$ $$32$$
     $$95-105$$ $$6$$
     $$105-115$$ $$10$$
    $$Mode=l+\bigg ( \dfrac{f_1-f_0}{2f_1-f_0-f_2} \bigg )\times h$$
    Here,
    $$Mode =85.7$$ 
    $$\Rightarrow$$ modal class $$=85-95$$
    lower limit of modal class $$l=85$$    
    class size $$h=10$$
    frequency of modal class $$f_1=32$$
    preceding frequency of modal class $$f_0=f$$
    succeeding frequency of modal class $$f_2=6$$
    $$\therefore 85.7=85+\bigg ( \dfrac{32-f}{64-f-6} \bigg )\times 10$$
    $$\therefore 85.7=85+\bigg ( \dfrac{320-10f}{58-f} \bigg )$$
    $$\therefore 85.7\times (58-f)=85(58-f)+ ( 320-10f  )$$
    $$\therefore 4970.6-85.7f=4930-85f+320-10f$$
    $$\therefore -279.4=-9.3f$$
    $$\therefore f=30.04 \approx30$$
    Hence, option $$C$$ is correct.
  • Question 4
    1 / -0
    An incomplete distribution is given below:
    Variable
    Frequency
    $$10-20$$
    $$12$$
    $$20-30$$
    $$30$$
    $$30-40$$
    $$f_1$$
    $$40-50$$
    $$65$$
    $$50-60$$
    $$f_2$$
    $$60-70$$
    $$25$$
    $$70-80$$
    $$18$$
    If median value is $$46$$ and the total number of items is $$230$$.
    Find the missing frequencies $$f_1$$ and $$f_2$$.
    Solution
    $$
    For\quad continuous\quad data,\quad median=\quad L\quad +\quad \left( \frac { \frac { N }{ 2 } -C }{ f }  \right) \quad \times \quad H\\ Where\quad N\quad =\quad Total\quad cumulative\quad frequency\\ L\quad =\quad lower\quad limit\quad of\quad the\quad median\quad class\quad Interval\quad ;\quad Median\quad Class\quad =\quad the\quad class\quad interval $$
    $$ having\quad cumulative\quad freq\quad \ge \quad \frac { N }{ 2 } \quad lies\\ C\quad =\quad cumulative\quad frequency\quad of\quad the\quad class\quad interval\quad just\quad before\quad the\quad median\quad class\quad interval\\ f\quad =\quad frequency\quad of\quad the\quad median\quad class\quad interval\quad ;\quad H\quad =\quad width\quad of\quad the\quad median\quad class $$
    $$ interval\\ 
    Here\quad given\quad N=230\quad \& \quad from\quad table\quad N=f_1+f_2+150\\ Given\quad median=46\quad ,\quad this\quad cumulative\quad freq\quad lies\quad within\quad interval\quad \left( 40-50 \right) ;\\ \frac { N }{ 2 } =115\quad ,\quad L=40\quad ;C=f_1+42\quad ;f=65;\quad H=10\\ Therefore\quad 40+\left( \frac { 115-\left( f_1+42 \right)  }{ 65 } \times 10 \right) =\quad 46\\ \Rightarrow \quad \left( \frac { 115-42-f_1 }{ 65 } \times 10 \right) =46-40\quad \Rightarrow \left( 73-f_1 \right) \times 10=\quad 6\times 65\quad \quad \\ \Rightarrow \quad 730-10f_1=390\quad \Rightarrow \quad -10f_1=390-730\quad \\ \Rightarrow \quad 10f1=340\quad \Rightarrow \quad f_1=\quad 34\\ Now\quad \quad f_1+f_2+150=230\quad \Rightarrow \quad f_2=230-150-34\quad \Rightarrow \quad f_2=46
    $$

  • Question 5
    1 / -0
    If the median of the following frequency distribution is $$32.5$$, find the missing frequencies.
    Class interval
    Frequency
    0-10
    $$f_1$$
    10-20
    5
    20-30
    9
    30-40
    12
    40-50
    $$f_2$$
    50-60
    3
    60-70
    2
    Total
    40
    Solution
    Frequency distribution table:
     $$ci$$ $$f_i$$ $$cf$$
     $$0-10$$ $$f_1$$ $$f_1$$
     $$10-20$$  $$5$$ $$5+f_1$$
     $$20-30$$ $$9$$ $$14+f_1$$
     $$30-40$$ $$12$$ $$26+f_1$$
     $$40-50$$ $$f_2$$ $$26+f_1+f_2$$
     $$50-60$$ $$3$$ $$29+f_1+f_2$$
     $$60-70$$ $$2$$ $$31+f_1+f_2$$
    Median $$=l +\dfrac {\bigg(\dfrac{N}{2}-cf\bigg)}{ f_m}\times c$$
    Here, 
    Class Interval $$c=10$$
    $$N=\Sigma f_i=31+f_1+f_2$$  
    $$N=\Sigma f_i=40$$  ....(given)
    $$\therefore 40=31+f_1+f_2$$
    $$\therefore f_2=9-f_1$$       ....(1)
    Median $$=32.5$$
    $$\Rightarrow$$ Median class $$=30-40$$
    $$\Rightarrow$$Frequency of median class$$ f_m=12$$
    Lower boundary of median class $$l=30$$
    previous cumulative frequency of median class $$cf=14+f_1$$

    $$\therefore 32.5$$ $$=30+\dfrac {\bigg(\dfrac{31+f_1+f_2}{2}-(14+f_1)\bigg)}{ 12}\times 10$$

    $$\therefore 32.5$$ $$=30+\dfrac {(3-f_1+f_2)}{ 12}\times 5$$

    $$\therefore 32.5$$ $$=\dfrac{360+15-5f_1+5f_2}{12}$$
    $$\therefore 390-375=-5f_1+5f_2$$
    $$\therefore -5f_1+5f_2=15$$
    $$\therefore -f_1+f_2=3$$  ....(2)

    substituting (1) in (2), we have
    $$-f_1+(9-f_1)=3$$
    $$-2f_1=-6$$
    $$\therefore f_1 =3$$
    substituting in $$f_1 =3$$ in (2), we get
    $$-3+f_2=3$$
    $$\therefore f_2=6$$ 
    Hence, option $$A$$ is correct.
  • Question 6
    1 / -0
    The following distribution gives the state-wise teacher student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.
    No. of students per teacher
    No. of state/ U.T.
    15-20
    3
    20-25
    8
    25-30
    9
    30-35
    10
    35-40
    3
    40-45
    0
    45-50
    0
    50-55
    2
    Solution
    Answer:- $$ x_i = \cfrac{\text{lower limit + upper limit}}{2} $$

     No. of students
    per teacher
    $$ x_i $$ No. of state
    ($$ f_i $$) 
     $$ x_i \times f_i = x_if_i $$
     15-20 17.5 3 52.5
     20-25 22.5 8 180
     25-30 27.5 9 247.5
     30-35 32.5 10 325
     35-40 37.5 3 112.5
     40-45 42.5 0 0
     45-50 47.5 0 0
     50-55 52.5 105
       $$ \Sigma f_i = 35 $$ $$ \Sigma f_i x_i = 1022.5 $$
    $$ \therefore Mean = \cfrac{\Sigma x_if_i}{\Sigma f_i} = \cfrac{1022.5}{35} = 29.2 $$
    Here, maximum frequency '10' is of classs interval '30-35'.
    $$ \therefore Modal class = 30 - 35.
    $$ \therefore Mode = L + \cfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$
    where 
    L = Lower limit of modal class $$= 30$$
    $$ f_1 $$ = frequency of modal class $$= 10$$
    $$ f_0 $$ = frequency of previoous class $$= 9$$
    $$ f_2 $$ = frequency of next class $$= 3$$
    h = width of class $$= 35 - 30 = 5$$
    $$ \therefore Mode = 30 + \cfrac{10 - 9}{2(10) - 9 - 3} \times 5 = 30 + \cfrac{1}{8} \times 5 = 30.625 $$
    $$ \therefore $$ D) Mode $$= 30.625$$ $$ \& $$ Mean $$= 29.2.$$
  • Question 7
    1 / -0
    The following tables gives the ages of the patients admitted in a hospital during a year.
    Age (in years)
    No. of patients
    $$5-15$$
    $$6$$
    $$15-25$$
    $$11$$
    $$25-35$$
    $$21$$
    $$35-45$$
    $$23$$
    $$45-55$$
    $$14$$
    $$55-65$$
    $$5$$
    Find the mode and the mean of the data
    Solution
    Consider the following table to calculate Mode & Mean:
     $$ci$$ $$f_i$$$$x_i$$  $$f_ix_i$$
    $$5-15$$$$6$$ $$10$$ $$60$$ 
    $$15-25$$ $$11$$ $$20$$ $$220$$ 
    $$25-35$$ $$21$$ $$30$$ $$630$$ 
    $$35-45$$ $$23$$ $$40$$ $$920$$ 
    $$45-55$$ $$14$$ $$50$$ $$700$$ 
    $$55-65$$ $$5$$ $$60$$ $$300$$ 
    $$Mode=l+\bigg ( \dfrac{f_1-f_0}{2f_1-f_0-f_2} \bigg )\times h$$
    Here,
    maximum frequency $$f_1=23$$
    $$\Rightarrow$$ modal class $$=35-45$$
    lower limit of modal class $$l=35$$    
    class size $$h=10$$
    preceding frequency of modal class $$f_0=21$$
    succeeding frequency of modal class $$f_2=14$$
    $$\therefore Mode=35+\bigg ( \dfrac{23-21}{46-21-14} \bigg )\times 10$$
    $$\therefore Mode=35+\bigg ( \dfrac{2}{11} \bigg )\times 10$$
    $$\therefore Mode=36.81 \approx 36.8$$

     $$N=\Sigma f_i=80$$          
     $$\Sigma f_ix_i=2830$$
    Mean $$\overline x=\dfrac {\Sigma f_ix_i}{N}$$
    $$\therefore \overline x=\dfrac{2830}{80}=35.37$$
    Hence, option $$B$$ is correct.
  • Question 8
    1 / -0
    The given distribution shows the number of runs scored by some top batsmen of the world in one day international cricket matches:
    Runs scored
    No. of batsman
    3000-4000
    4
    4000-5000
    18
    5000-6000
    9
    6000-7000
    7
    7000-8000
    6
    8000-9000
    3
    9000-10000
    1
    10000-11000
    1
    Find the mode of the data
    Solution
    Runs scored
      $$No. of batsman$$
    $$3000-4000$$
              $$4$$
    $$4000-5000$$
              $$18$$
    $$5000-6000$$
              $$9$$
    $$6000-7000$$
              $$7$$
    $$7000-8000$$
              $$6$$
    $$8000-9000$$
              $$3$$
    $$9000-10000$$
              $$1$$
    $$10000-11000$$
              $$1$$
    Modal group=$$4000-5000$$
    $$L=$$$$4000$$
    $$F_{1}$$=$$18$$
    $$F_{0}$$=$$4$$
    $$F_{2}$$=$$9$$
    $$H=$$$$1000$$
    $$Mode$$=$$L+\dfrac{F_1-F_0}{2F_1-F_0-f_2}\times h$$
    $$=4000+\dfrac{18-4}{36-4-9}\times 1000$$
    $$Mode=4608.69$$
  • Question 9
    1 / -0
    The following distribution gives the state-wise teacher-student ratio in higher secondary schools of  India. Find the mode and mean of this data. 
    No. of students per teacher
    No. of state/U.T.
    15-20
    3
    20-25
    8
    25-30
    9
    30-35
    10
    35-40
    3
    40-45
    0
    45-50
    0
    50-55
    2
    Solution
    Answer:- $$ x_i = \cfrac{\text{lower limit + upper limit}}{2} $$

     No. of students
    per teacher
    $$ x_i $$ No. of state
    ($$ f_i $$) 
     $$ x_i \times f_i = x_if_i $$
     15-20 17.5 3 52.5
     20-25 22.5 8 180
     25-30 27.5 9 247.5
     30-35 32.5 10 325
     35-40 37.5 3 112.5
     40-45 42.5 0 0
     45-50 47.5 0 0
     50-55 52.5 105
       $$ \Sigma f_i = 35 $$ $$ \Sigma f_i x_i = 1022.5 $$
    $$ \therefore Mean = \cfrac{\Sigma x_if_i}{\Sigma f_i} = \cfrac{1022.5}{35} = 29.2 $$
    Here, maximum frequency $$'10'$$ is of classs interval $$'30-35'$$.
    $$ \therefore Modal\ class = 30 - 35$$.
    $$ \therefore Mode = L + \cfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$
    where 
    L $$=$$ Lower limit of modal class $$= 30$$
    $$ f_1 $$ = frequency of modal class $$= 10$$
    $$ f_0 $$ = frequency of previoous class $$= 9$$
    $$ f_2 $$ = frequency of next class $$= 3$$
    h = width of class $$= 35 - 30 = 5$$
    $$ \therefore Mode = 30 + \cfrac{10 - 9}{2(10) - 9 - 3} \times 5 = 30 + \cfrac{1}{8} \times 5 = 30.625 $$
    $$ \therefore $$ D) Mode $$= 30.625$$ $$ \& $$ Mean $$= 29.2$$.
  • Question 10
    1 / -0
    The following table gives the distribution of the life time of 400 neon lamps:
    Life Time (in hours)
    No. of lamps
    1500-2000
    14
    2000-2500
    56
    2500-3000
    60
    3000-3500
    85
    3500-4000
    74
    4000-4500
    62
    4500-5000
    48
    Find the median life-time of a lamp.
    Solution

    Life Time (in hours)


    No. of lamps
    (Freq)

    CumFreq
    1500-2000                   14                               14
    2000-2500 56 70
    2500-3000 60 130$$(C)$$
    3000-3500 85$$(f)$$ 215
    3500-4000 74 289
    4000-4500 62 351
    4500-5000 48 399
     
    $$The\quad Median\quad class\quad lies\quad in\quad the\quad range\quad of\quad 3000\quad to\quad 3500\\ The\quad formula\quad for\quad Median\quad of\quad the\quad continuous\quad class=L+(\frac{(\frac{N}{2}-C)}{f})\times H\\ Here\quad L=3000,f=85,C=130,H=500,N=399\\ Median=3000+(\dfrac{(199.5-130)}{85})\times 500\\        =\quad 3408.823529\quad \\ Therefore\quad the\quad median\quad life\quad time\quad of\quad a\quad lamp\ =\ 3408.82\ hours$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now