Self Studies

Statistics Test - 34

Result Self Studies

Statistics Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:
    No. of letters
    No. of surnames
    1-4
    6
    4-7
    30
    7-10
    40
    10-13
    16
    13-16
    4
    16-19
    4
    Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames
    Solution

    Number of letters
    Number of surnames $$f_1$$
    Cumulative frequency


    1-4
    6
    $$6=6$$


    4-7
    30
    $$6+30=36$$

    Median class
    7-10
    40
    $$36+40=76$$
    $$50=\frac {n}{2}$$

    10-13
    16
    $$76+16=92$$


    13-16
    4
    $$92+4=96$$


    16-19
    4
    $$96+4=100

    Total $$n=100$$
    (i) Here,
    $$l=7, n=100, f=40, cf=36, h=3$$
    $$Median=l+\left \{\frac {\frac {n}{2}-cf}{f}\right \}\times h$$
    $$=7+\left \{\frac {50-36}{50}\right \}\times 3=7+\frac {21}{20}=8.05$$
    (ii) Modal class is (7-10)
    $$l=7, f_m=40, f_1=30, f_2=16, h=3$$
    $$Mode=l+\left \{\frac {f_m-f_1}{2f_m-f_1-f_2}\right \}\times h$$
    $$=7+\left \{\frac {40-30}{80-30-16}\right \}\times 3=7+\frac {30}{34}=7.88$$
    (iii) Here, $$a=8.5, h=3, n=100$$ and $$\sum f_iu_i=-6$$
    Number of letters
    $$f_i$$
    Class mark $$x_i$$
    $$u_i=\frac {x_i=8.5}{3}$$
    $$f_i\times u_i$$
    1-4
    6
    2.5
    -2
    -12
    4-7
    30
    5.5
    -1
    -30
    7-10
    40
    8.5=a
    0
    0
    10-13
    16
    11.5
    1
    16
    13-16
    4
    14.5
    2
    8
    16-19
    4
    17.5
    3
    12
    Total
    $$n=100


    -6
    $$Mean=a+h\times \frac {1}{n}\times \sum f_iu_i=8.5+3\times \frac {1}{100}\times (-6)$$
    $$8.5-\frac {18}{100}=8.5-0.18=8.32$$
  • Question 2
    1 / -0
    The following data gives the information on the observed lifetimes (in hours) of $$225$$ electrical components:
    Lifetimes (in hours)
    0-20
    20-40
    40-60
    60-80
    80-100
    100-120
    Frequency
    10
    35
    52
    61
    38
    29
    Determine the modal lifetimes of the components.
    Solution
    Modal class of the given data is $$60-80$$.
    Here, $$l=60, f_m=62, f_1=52, f_1=38$$ and $$h=20$$
    $$Mode=l+\left \{\cfrac {f_m-f_1}{2f_m-f_1-f_2}\right \}\times h$$
    $$=60+\left \{\cfrac {61-52}{122-52-38}\right \}\times 20$$
    $$=60+\cfrac {9\times 20}{32}=60+\dfrac {45}{8}=60+5.625$$
    $$=65.625$$ hours
  • Question 3
    1 / -0
    A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data.
    No. of cars
    Frequency
    0-10
    7
    10-20
    14
    20-30
    13
    30-40
    12
    40-50
    20
    50-60
    11
    60-70
    15
    70-80
    8
    Solution

    No of cars Frequency(Fi)
    0-10 7
    10-20 14
    20-30 13
    30-40 12
    40-50 20
    50-60 11
    60-70 15
    70-80 8


    $$The\quad modal\quad range\quad lies\quad where\quad the\quad freq\quad is\quad highest\quad =\quad 40-50\\ The\quad mode\quad of\quad the\quad continuous\quad range\quad =\quad L+\dfrac{(fm-fm-1)}{((fm-fm-1)+(fm-fm+1))} \times H\quad \\ We\quad have,\quad L=40,fm=20,fm-1=12,fm+1=11,H=10\\ Mode\ =\ 40+\dfrac{(20-12)}{((20-12)+(20-11))} \times 10\\ =\quad 44.70588235\\ =\quad 44.7$$
  • Question 4
    1 / -0
    A life insurance agent found the following data for distribution of ages of $$100$$ policy holders. Calculate the median age, if policies are only given to person having age $$18$$ years onwards but less than $$60$$ years.
    Age (in years)
    No. of policy holders
    Below $$20$$
    $$2$$
    Below $$25$$
    $$6$$
    Below $$30$$
    $$24$$
    Below $$35$$
    $$45$$
    Below $$40$$
    $$78$$
    Below $$45$$
    $$89$$
    Below $$50$$
    $$92$$
    Below $$55$$
    $$98$$
    Below $$60$$
    $$100$$
    Solution
    Age (in years)       
    Number of policy holders     $$f_1$$
    Cumulative frequency
    Below $$20$$
    $$2=2$$
    $$2$$
    $$20-25$$
    $$(6-2)=4$$
    $$6$$
    $$25-30$$
    $$(24-6)=18$$
    $$24$$
    $$30-35$$
    $$(45-24)=21$$
    $$45$$
    $$35-40$$
    $$(78-45)=33$$
    $$78$$
    $$40-45$$
    $$(89-78)=11$$
    $$89$$
    $$45-50$$
    $$(92-89)=3$$
    $$92$$
    $$50-55$$
    $$(98-92)=6$$
    $$98$$
    $$55-60$$
    $$(100-98)=2$$
    $$100$$
    Total
    $$n=100$$

    Here, $$l=35, n=100, f=33, cf=45, h=5$$ Median$$=l+\left \{\cfrac {\frac {n}{2}-cf}{f}\right \}\times h$$
    $$=35+\left \{\cfrac {50-45}{33}\right \}\times 5$$
    $$=35+\cfrac {25}{33}$$
    $$=35+0.76$$
    $$=35.76$$ years
  • Question 5
    1 / -0
    If the median of the distribution given below is $$28.5$$. Find the values of $$x$$ and $$y$$.
    Class interval
    Frequency
    Cumulative frequency
    0-10
    5
    5
    10-2
    x
    5+x
    20-30
    20
    25+x
    30-40
    15
    40+x
    40-50
    y
    40+x+y
    50-60
    5
    45+x+y
    Total
    60

    Solution
    Median $$=28.5$$ lies in the class interval $$(20-30)$$.
    Then median class is $$(20-30)$$.
    So, we have $$l=20, f=20, cf=5+x, h=10, n=60$$
    Median $$=l+\left \{\dfrac {\frac {n}{2}-cf}{f}\right \}\times h=28.5$$
    $$\Rightarrow 28.5=20+\left \{\dfrac {30-(5+x)}{20}\right \}\times 10$$
    $$\Rightarrow 8.5=\dfrac {25-x}{2}$$
    $$\Rightarrow 17=25-x$$
    $$\Rightarrow x=8$$
    Find the given table, we have
    i.e., $$x+y+45=60$$ or $$x+y=15$$
    $$\Rightarrow y=15-x=15-8=7$$, i.e., $$y=7$$
  • Question 6
    1 / -0
    Length (in mm)
    No. of leaves
    118-126
    3
    127-135
    5
    136-144
    9
    145-153
    12
    154-162
    5
    163-171
    4
    172-180
    2
    The length of 40 leaves of a plant are measured correct to the nearest millimetre, and the data obtained is represented in the following table. Find the median length of the leaves
    Solution
    $$ Changing\quad to\quad continuos\quad domain\quad (subtracting\quad 0.5\quad from\quad lower\quad range\quad and\quad adding\quad 0.5\quad to\quad the $$
    $$ upper\quad range\quad as\quad 1/2\ =\ 0.5)$$

    LengthNo of leaves         Cum Freq
    117.5 to 126.5                                 3
    126.5 to 135.5 5              8
    135.5 to 144.5 9              17
    144.5 to 153.5 12              29
    153.5 to 162.5 5              34
    162.5 to 171.5 4              38
    171.5 to 180.5
    2              40

    $$ Now\quad we\quad get\quad a\quad continuous\quad domain\quad data\quad map\quad \\ Next,\quad we\quad find\quad the\quad cumulative\quad freq\quad values\quad in\quad the\quad continuous\quad domain.\\ We\quad find\quad the\quad median\quad will\quad lie\quad half\quad of\quad 40\quad ie\quad between\quad 144.5\quad to\quad 153.5\quad range.\\ As\quad we\quad know\quad the\quad value\quad of\quad median\quad of\quad continuous\quad domain\quad =\quad L+((N/2-C)/f)*H\\ Here\quad L\quad =\quad 144.5,f\quad =\quad 12,C\quad =\quad 17,H\quad =\quad 9,\quad N=40\\ Median=144.5+((20-17)/12)*9\\ \quad =\quad 146.75\\ Therefore\quad the\quad median\quad is\quad =\quad 146.75mm
    $$
  • Question 7
    1 / -0
    The distribution below gives the weights of 30 students of a class. Find the median weight of the students.
    Weight (in kg)
    No. of students
    40-45
    2
    45-50
    3
    50-55
    8
    55-60
    6
    60-65
    6
    65-70
    3
    70-75
    2
  • Question 8
    1 / -0
    If the mode of a distribution is $$18$$  and the mean is $$ 24$$, then median is
    Solution
    Given, Mode $$=18$$ and Mean $$=24$$
    thus using,  Mode $$ =3\times $$ median $$-2\times $$ Mean
    $$\therefore$$ Median $$=\cfrac{2\times 24+18}{3}=22$$
  • Question 9
    1 / -0
    The ages of $$40$$ students in a class are given. Find the mean age of the class

    Solution
    Sol. We prepare the table as above.
    $$\therefore$$ Mean age = $$\dfrac { \sum { f_{ i }x_{ i } } }{ \sum { f_{ i } } } =\dfrac { 580 }{ 40 } = 14.5$$ years

  • Question 10
    1 / -0
    The following table shows the marks obtained by 100 students of class x in a school during a particular academic session. Find the mode of this distribution.
    Marks
    No. of students
    Less than 10
    7
    Less than 20
    21
    Less than 30
    34
    Less than 40
    46
    Less than 50
    66
    Less than 60
    77
    Less than 70
    92
    Less than 80
    100
    Solution
    Frequency distribution table:
     $$ci$$ $$f_i$$ $$cf$$
     $$0-10$$ $$7$$ $$7$$
     $$10-20$$ $$21-7=14$$ $$21$$
     $$20-30$$ $$34-21=13$$ $$34$$
     $$30-40$$ $$46-24=12$$ $$46$$
     $$40-50$$ $$66-46=20$$ $$66$$
     $$50-60$$ $$77-66=11$$ $$77$$
     $$60-70$$ $$92-77=15$$ $$92$$
     $$70-80$$ $$100-92=8$$ $$100$$
    $$Mode=l+\bigg ( \dfrac{f_1-f_0}{2f_1-f_0-f_2} \bigg )\times h$$
    Here,
    maximum frequency $$f_1=20$$
    $$\Rightarrow$$ modal class $$=40-60$$
    lower limit of modal class $$l=40$$    
    class size $$h=10$$
    preceding frequency of modal class $$f_0=12$$
    succeeding frequency of modal class $$f_2=11$$
    $$\therefore Mode=40+\bigg ( \dfrac{20-12}{40-12--11} \bigg )\times 10$$
    $$\therefore Mode=40+\bigg ( \dfrac{8}{17} \bigg )\times 10$$
    $$\therefore Mode=44.705 \approx 44.71$$
    Hence, option $$A$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now