Self Studies

Statistics Test - 37

Result Self Studies

Statistics Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If mode = $$80$$ and mean = $$110$$, then the median is 
    Solution
    Given, mode $$= 80$$, mean $$= 110$$
    We know, Mode $$= 3$$ (median) $$- 2$$ (mean)
    $$80 = 3$$ (median) $$- 2 (110)$$
    $$3$$ (Median) $$= 80 + 220$$
    Median $$ \displaystyle =\frac{300}{3}=100$$ 
  • Question 2
    1 / -0
    Find the value of $$p$$ if the mean of the following distribution is $$20$$.
    $$x$$   15  171920 + $$p$$23
    $$f$$2345$$p$$6
    Solution
     $$x$$ $$f$$ $$fx$$
     $$15$$ $$2$$ $$30$$
     $$17$$ $$3$$ $$51$$
     $$19$$ $$4$$ $$76$$
    $$(20+p)$$
     $$5p$$ $$\displaystyle 100p+5p^{2}$$
     $$23$$ $$6$$ $$138$$


    $$\displaystyle \sum f=15+5p$$

    $$\displaystyle \sum fx=295+100p+5p^{2}$$

    Mean $$\overline{x}=\dfrac{\sum fx}{\sum f}=\dfrac{295+100p+5p^{2}}{15+5p}$$

    $$\displaystyle \Rightarrow 20=\frac{295+100p+5p^{2}}{15+5p}$$

    $$\displaystyle \Rightarrow 300+100p=295+100p+5p^{2}$$

    $$\displaystyle \Rightarrow 5p^{2}=5$$

    $$\Rightarrow p=1$$ or $$-1$$
  • Question 3
    1 / -0
    The mean of the following distribution is
    Class$$0-5$$$$5-10$$$$10-15$$$$15-20$$$$20-25$$$$25-30$$
    Frequency$$4$$$$5$$$$7$$$$12$$$$7$$$$5$$
    Solution
    Answer:-
    $$x_i=\cfrac{\text{upper limt + lower limit}}{2}$$

    Class Frequency $$x_i$$ $$x_i.f_i$$ 
    $$0-5$$ $$4$$ $$2.5$$  $$6$$
     $$5-10$$ $$5$$$$7.5$$ $$37.5$$ 
     $$10-15$$ $$7$$$$12.5$$ $$87.5$$ 
     $$15-20$$ $$12$$$$17.5$$ $$210$$
     $$20-25$$ $$7$$$$22.5$$ $$157.5$$ 
     $$25-30$$$$5$$ $$27.5 $$$$137.5$$ 
      $$\Sigma f_i=40$$ $$\Sigma f_i.x_i=640$$ 
    Mean =$$ \cfrac { \Sigma f_{ i }.x_{ i } }{ \Sigma f_{ i } } =\cfrac { 640 }{ 40 } =16$$

  • Question 4
    1 / -0
    Calculate the median from the following data
    Rent (in Rs.)15-2525-3535-4545-5555-6565-7575-8585-95
    No. of Houses81015254020157
    Solution
     RentNo. of houses  C. F. 
     15-25
     25-3510 18 
     35-45 1533
     45-55  2558
    55-65  4098 
     65-75 20118 
     75-85 15133 
     85-95 7140 
     $$\Sigma f_i = 140$$  
    $$\cfrac{N}{2}=\cfrac{140}{2}=70$$
    $$\Rightarrow\; \text{98 is just greater than 70} \therefore\; \text{Median class is 55-65.}$$
    Median  $$=L+\cfrac{\cfrac{N}{2}-C}{f}\times w$$
    L = Lower limit of median class $$= 55$$
    C = C.F. of class preceding the median class $$= 58$$
    f = frequency of median class $$= 40$$
    w = width of median class $$= 65-55 = 10$$
    Median  $$=55+\cfrac{70-58}{40}\times 10\;=\;55+\cfrac{12}{4}\;=\;58$$
    A) 58

  • Question 5
    1 / -0
    Find the mode of the following distribution
    Daily Wages31-3637-4243-4849-5455-6061-66
    No. of workers612201594
    Solution
    Converting the given class interval into continuous class interval; Adding $$0.5$$ to upper limit and subtracting $$0.5$$ to lower limit.
     Daily wagesNo. of workers 
     30.5-36.5
     36.5-42.5 12
     42.5-48.5 20
     48.5-54.5 15
     54.5-60.5 9
     60.5-66.5 4
    Since the maximum frequency is of class $$42.5-48.5$$ i.e. $$20.$$ Hence the modal class is $$42.5-48.5$$.
    Mode = $$l+\cfrac{f_1-f_0}{2f_1-f_0-f_2}\times h$$
    $$l =$$ lower limit of modal class $$= 42.5$$
    $$f_1$$ = frequency of modal class $$= 20$$
    $$f_0$$ = frequency of class before modal class $$= 12$$
    $$f_2$$ = frequency of class after modal class $$= 15$$
    h = width of modal class$$=  48.5-42.5 = 6$$
    $$\therefore \; Mode=42.5+\cfrac{20-12}{\left(2\times 20\right)-12-15}\times 6 = 46.5 \simeq 46.2$$
  • Question 6
    1 / -0
    Calculate the median for the following distribution class
    Class0-1010-2020-3030-4040-5050-60
    Frequency51020785
    Solution
    Total frequency $$=$$ $$55$$.
    So, $$\dfrac{55}{2}=27.5$$ which lies in class $$20-30$$.
    Hence, median is in group $$20-30$$
    Estimated median $$= L+\dfrac{n/2-B}{G}W$$,
    where $$L$$ $$=$$ Lower class boundary of the group containing the median
    $$n$$ $$=$$ Total frequency
    $$B$$ $$=$$ total frequency before the median group
    $$G$$ $$=$$ frequency of the median
    $$W$$ $$=$$ class width
    $$=20+\dfrac{(55/2)-15}{20}.10$$
    $$=26.25$$
  • Question 7
    1 / -0
    Which of the following is correct for the given data $$55, 38, 69, 24, 89$$?
    Solution
    $$24, 38, 55, 69, 89$$

    $$Mean = \dfrac{sum\  of \ all \ the\  terms}{total\  number\  of\ terms} $$

    $$Mean = \dfrac{24+38+55+69+89}{5}$$

    $$Mean=\dfrac {275}{5}=55$$
    if n (total number of terms ) is odd then the middle term when the data is arranged in ascending order is median
    Arranging the data in ascending order, we get :
    $$24, 38, 55, 69, 89$$
    $$Median=55$$
    Therefore, for the given data,$$Mean=median$$
  • Question 8
    1 / -0
    Calculate the median in the following frequency distribution
    Wages50-6060-7070-8080-9090-100
    No. of labourers510152025
    Solution
    Wagesmid point
    (m)
     frequency
    (f)
     (m-75)/10
    (d)
    fd  c.f.
     50-60 55 5 -2 -10 5
    60-70 65 10 -1 -10 15
     70-80 75 15 0 0 30
    80-90 85 20 1 20 50
    90-100 95 25 2 50 75
       n=75  $$\sum fd=50$$ 
    Median is given by $$L+\dfrac{\dfrac n2 -c.f.}{f}\times i$$

    where $$L$$ is the lower limit of the median class. (median class is the class where $$\dfrac n2^{th}$$ term is lying)
    $$c.f.$$ is the cumulative frequency of the class preceding the median class
    $$f$$ is the frequency of the median class
    $$i$$ is the class interval of the median class. 

    From the above table,
    $$L=70$$
    $$\dfrac n2 =37.5$$
    $$c.f.=15$$
    $$f=15$$
    $$i=10$$

    Therefore, $$median=70+\dfrac{37.5 -15}{15}\times 10=70+15=85$$

  • Question 9
    1 / -0
    Calculate the median from the following distribution
    Class5-1010-1515-20
    5615
    Class20-2525-3030-35
    1054
    Class35-4040-45
    22
    Solution
    Prepare the cumulative table. $$N = 49$$
    $$\Rightarrow \frac {N}{2}=24.5$$
    cumulative frequency $$> \frac {N}{2}$$ corresponds to 15-20 (median class)
    $$Median=l+\frac {\frac {N}{2}-F_1}{F}\times h=$$
    $$15+\frac {24.5-11}{15}\times 5=19.5$$.
  • Question 10
    1 / -0
    Find the mean
    Age (yrs)7891011
    No. of Students564127
    Solution
     $$Age(yrs)$$
       $$x_i$$
    $$No.of\,students$$
    $$f_i$$
    $$f_ix_i$$ 
    $$7$$ $$5$$ $$35$$ 
    $$8$$ $$6$$ $$48$$ 
    $$9$$ $$4$$ $$36$$ 
    $$10$$ $$12$$ $$120$$ 
    $$11$$ $$7$$ $$77$$ 
     $$\sum f_i=34$$ $$\sum f_ix_i=316$$ 
    $$\Rightarrow$$  $$Mean=\dfrac{\sum f_ix_i}{f_i}=\dfrac{316}{34}=9.3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now