Self Studies

Statistics Test - 39

Result Self Studies

Statistics Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the mean of the following frequency distribution ?
    x578912
    y21543

    Solution
    Mean$$=\dfrac { \sum { fx }  }{ \sum { f }  } $$
             $$ = \dfrac {  { 5 \times 2 + 7 \times 1 + 8 \times 5 + 9 \times 4  + 12 \times 3 }  }{  { 2 + 1 + 5 + 4 + 3}  } $$
  • Question 2
    1 / -0
    If mean of given data is 12 then value of p is 
    x48p1620
    f531254
    Solution
    $$x$$$$f$$ $$xf$$ 
    $$4$$ $$5$$ $$20$$ 
    $$8$$ $$3$$ $$24$$ 
    $$p$$ $$12$$ $$12p$$ 
    $$16$$ $$5$$ $$80$$ 
    $$20$$ $$4$$ $$80$$ 
     $$\sum f=29$$ $$\sum xf=204+12p$$ 
      $$\overline{x}=\dfrac{\sum xf}{\sum f}$$
    We are given the mean of the data as 12

    $$\therefore$$   $$12=\dfrac{204+12p}{29}$$

    $$\Rightarrow$$  $$12=\dfrac{12(17+p)}{29}$$
    $$\Rightarrow$$  $$29=17+p$$
    $$\Rightarrow$$ $$p=29-17$$
    $$\therefore$$  $$p=12$$
  • Question 3
    1 / -0
    The median of the data 30, 25, 27, 29, 35, 38, 28 is _______.
    Solution
    Arrange the given data in ascending order.
    We have, $$25, 27, 28, 29, 30, 35, 38$$
    Median is $$29$$

  • Question 4
    1 / -0
    The height of $$30$$ boys of a class are given in the following table
    Height in cmfrequency
    $$120 - 129$$$$2$$
    $$130 - 139$$$$8$$
    $$140 - 149$$$$10$$
    $$150 - 159$$$$7$$
    $$160 - 169$$$$3$$
    If by joining of a boy of height $$140$$ cm, the median of the heights is changed from $$M_1$$ to $$M_2$$, then $$M_1- M_2$$ in cm is
    Solution
    $$Height\,in\,cm$$ $$Frequency$$ $$cf$$ 
     $$119.5-129.5$$$$2$$ $$2$$ 
     $$129.5-139.5$$$$8$$ $$10$$ 
     $$139.5-149.5$$$$10$$ $$20$$ 
     $$149.5-159.5$$$$7$$ $$27$$ 
     $$159.5-169.5$$$$3$$ $$30$$ 
    Here, $$n=30$$ then, $$\dfrac{n}{2}=\dfrac{30}{2}=15$$
    $$\therefore$$  Median class $$=139.5-149.5$$
    $$l=139.5,c.f=10,f=10,h=10$$
    $$Median=l+\dfrac{\dfrac{n}{2}-cf}{f}\times h$$

                    $$=139.5+\dfrac{15-10}{10}\times 10$$
       
                    $$=139.5+5$$
                    $$=144.5$$
    $$\therefore$$   $$Median(M_1)=144.5$$
    $$\Rightarrow$$  After adding height of boy $$140\,cm$$, total number of boys becomes $$31$$
    $$\therefore$$  $$n=31$$ and $$\dfrac{n}{2}=\dfrac{31}{2}=15.5$$
    Median class $$=139.5-149.5$$
    All the values remain same except $$f=11$$ and $$\dfrac{n}{2}=15.5$$
    $$Median (M_2)=139.5+\dfrac{15.5-10}{11}\times 10$$

                             $$=139.5+5$$
                             $$=144.5$$
    $$\therefore$$  $$Median(M_2)=144.5$$
    $$\Rightarrow$$  $$M_1-M_2=144.5-144.5=0$$


  • Question 5
    1 / -0
    x5101571318
    f12810141014
    The median of the above data is 
    Solution
    $$x$$    $$f$$      Cumulative Frequency
    5     $$12$$      $$12$$
    10    $$8$$      $$12+8 = 20$$
    15    $$10$$      $$20+10 = 30$$
    7     $$14$$      $$30+14 = 44$$
    13    $$10$$      $$44+10 = 54$$
    18    $$14$$      $$54+14 = 68$$

    We find that the cummulative frequency greater than $$\displaystyle\frac{N}{2}(34)$$ is $$44$$ and value of $$x$$ corresponding to $$44$$ is $$7$$. 

    Hence, $$Median = 7$$
  • Question 6
    1 / -0
    The height of 30 boys of a class are given in the following table
    Height in cmFrequency
    120-1292
    130-1398
    140-14910
    150-1597
    160-1693
    If by joining of a boy of height 140 cm, the median of the heights is changed from $$M_1$$ to $$M_2$$, then $$M_1-M_2$$ in cm is
    Solution
    Height  Freq. C.F. Actual class limit
    (in cm)
    120-129   2       2     119.5-129.5
    130-139   8       10    29.5-139.5
    140-149   10      20  139.5-149.5
    150-159   7       27   149.5-159.5
    160-169   3      30    159.5-169.5
    $$n=30$$
    Here $$n=30$$

    $$\displaystyle\therefore\frac{n}{2}+1=15+1=16$$

    $$\therefore$$ 16 under frequency 20. So median class be140-149.

    $$L_1=1395$$, $$L_2=1495$$, $$f=10$$, $$n=30$$, $$c=10$$.

    Median $$\displaystyle M_1=L_1+\frac{L_2-L_1}{f}\left(\frac{n}{2}-c\right)$$

    $$\displaystyle=139.5+\frac{10}{10}(15-10)=144.5$$

    If by joining of a boy of height 140 cm, then

    $$n=31$$, $$f=11$$

    $$\therefore$$ Median $$\displaystyle M_2=139.5+\frac{149.5-139.5}{11}(15.5-10)$$

    $$\displaystyle=139.5+\frac{10}{11}\times5.5=144.5\:cm$$

    then $$M_1-M_2=144.5-144.5=0$$
  • Question 7
    1 / -0
    Find the arithmetic mean for the given data:

    MarksNo. of students
    $$0-10$$$$5$$
    $$10-20$$$$10$$
    $$20-30$$$$25$$
    $$30-40$$$$30$$
    $$40-50$$$$20$$
    $$50-60$$$$10$$

    Solution
    Mid-values$$(x_i)$$      No. of students$$(f_i)$$      Product$$(f_ix_i)$$
    $$5$$                                    $$5$$                                   $$25$$
    $$15$$                                 $$10$$                                 $$150$$
    $$25$$                                 $$25$$                                 $$625$$
    $$35$$                                 $$30$$                                $$1050$$
    $$45$$                                 $$20$$                                 $$900$$
    $$55$$                                 $$10$$                                 $$550$$
                                            
                                     $$\Sigma f_i=100$$                   $$\Sigma f_ix_i=3300$$


    $$\therefore$$ Arithmetic Mean $$= \displaystyle \frac{\Sigma f_ix_i}{\Sigma f_i}$$

                                    $$= \displaystyle \frac{3300}{100}$$

                                    $$ = 33$$

    Hence, the arithmetic mean is $$33.$$
  • Question 8
    1 / -0
    For the following distribution:
    Mark less than   10   20   30   40   50   60
    No. of students    3   12   27   57   75   80
    The modal class is
    Solution
     Class Frequency
     0-10
     10-2012 
     20-3027 
     30-4057 
     40-5075 
     50-6080 
    The model class is the class with the highest frequency.Hence highest frequency is '80' so the model class is '50-60'
     
  • Question 9
    1 / -0
    Find the mean of the following frequency distribution.
    x10153025422111
    f5264382
    Solution
    Mean=$$\displaystyle \frac{\sum fx}{\sum f}=\frac{676}{30}=22\frac{8}{15}$$
  • Question 10
    1 / -0
    Consider the data: $$2, x, 3, 4, 5, 2, 4, 6, 4$$ where $$x >2$$
    The mode of the data is _____
    Solution
    The value which occurs the maximum number of times in a given set of data is know as mode.
    In the given data $$4$$ occurs 3 times and hence it is the mode. But $$x$$ is unknown.
    We know that $$x>2$$
    Hence even if we consider $$x$$ as $$3,4,5\ or\ 6$$ still $$4$$ will remain as the mode.
    Hence $$4$$ is the ans.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now