Self Studies

Statistics Test - 48

Result Self Studies

Statistics Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the mode for the following data$$:$$
    Farm size$$12$$$$13$$$$14$$$$15$$$$17$$$$18$$$$19$$$$20$$
    Number of animals$$3$$$$4$$$$4$$$$2$$$$1$$$$2$$$$4$$$$1$$
    Solution
    Mode for the discrete series is the variable which has the highest frequency.
    From the given distribution table, the highest frequency is $$4$$ which is associated with the variables $$13,14$$ and $$19$$
    Therefore, the mode is $$13,14$$ and $$19$$
  • Question 2
    1 / -0
    The following is a frequency table of the score obtained in a science quiz competition. Find the median score.
    score
    $$10$$
    $$15$$
    $$20$$
    $$25$$
    $$30$$
    frequency
     $$2$$
    $$3$$
    $$5$$
    $$6$$
    $$4$$
    Solution
    For the discrete data series, median is the $$(\dfrac{n+1}{2})^{th}$$ value.

    Where $$n$$ is the number of observations.

    Therefore, $$n=5$$

    Hence, $$median=\dfrac{5+1}2=\dfrac{6}2=3^{rd}$$ value

    Therefore, $$median=20$$ 
  • Question 3
    1 / -0
    Calculate mode for the following data shows the number of colour pencils the students have in a class.
    Colour Pencils$$0-5$$$$5-10$$$$10-15$$$$15-20$$$$20-25$$$$25-30$$
    Number of students$$14$$$$16$$$$17$$$$13$$$$8$$$$12$$
    Solution
    The lower limit ( l ) of the modal class $$= 10,$$
    The class size ( h) $$= 5,$$
    The frequency $$(f_1)$$ of modal class $$=17$$,
    The frequency $$(f_0)$$ of the class preceding the modal class $$= 16$$,
    The frequency $$(f_2)$$ of the class succeeding the modal class $$=13.$$
    Now, using the formula Mode$$=l+\left(\displaystyle\frac{f_1-f_0}{2f_1-f_0-f_2}\right)\times h$$
    $$=60+\left(\displaystyle\frac{17-16}{(2\times 17)-16-13}\right)\times 5$$
    $$=10+0.2\times 5$$
    $$=10+1$$
    $$=11$$
    Therefore, mode of colour pencil students have is $$11$$
  • Question 4
    1 / -0

    A survey was conducted to identify vegetarians in a group of people. Find the mode of the data.

    Group$$5-7$$$$7-9$$$$9-11$$$$11-13$$$$13-15$$$$15-17$$
    Frequency$$6$$$$7$$$$3$$$$7$$$$12$$$$9$$
    Solution

     

    Group

    frequency

    5-7

    6

    7-9

    7

    9-11

    3

    11-13

    7

    13-15

    12

    15-17

    9

    Maximum frequency$$=12$$

    Modal class$$=13-15$$

    $$l=3$$, $$h=12$$

    $${ f }_{ I }=12{ ,f }_{ 0 }{ =7,f }_{ 2 }=9$$

    Mode $$=\left( \cfrac { { f }_{ I }{ -f_{ 0 } } }{ { 2f }_{ I }-{ f }_{ 0 }{ -f }_{ 2 } }  \right) \times h$$

               $$=13+\left( \cfrac { 12-7 }{ 24-7-9 }  \right) \times 2$$

              $$=13+\left( \cfrac { 5 }{ 8 }  \right) \times 2$$

              $$=13+\left( \cfrac { 5 }{ 4 }  \right) $$

               $$=13+1.25$$   

               $$=14.25$$

  • Question 5
    1 / -0
    In a school the mark distribution of $$25$$ students in a mathematics examination is given below. Calculate it's mode.
    Marks$$30-40$$$$40-50$$$$50-60$$$$60-70$$$$70-80$$$$80-90$$
    No. of students$$3$$$$2$$$$4$$$$10$$$$4$$$$2$$
    Solution

    Marks

    Number of Students

    $$30-40$$

    $$3$$

    $$40-50$$

    $$2$$

    $$50-60$$

    $$4$$

    $$60-70$$

    $$10$$

    $$70-80$$

    $$4$$

    $$80-90$$

    $$2$$

    $$Maximum\ frequency=10$$
    Modal class $$=60-70$$
    Lower value(l) $$=60$$
    ($${ f }_{ 1 }$$) frequency of modal class $$=10$$
    ($${ f }_{ 0 }$$) frequency of preceeding class $$4$$
    ($${ f }_{ 2 }$$) frequency of succeeding class $$=4$$
    $$h=10$$
    $$Mode=l+\left( \cfrac { { f }_{ 1 }-{ f }_{ 0 } }{ { 2f }_{ 1 }-{ f }_{ 0- }{ f }_{ 2 } }  \right) \times h\\ \quad =60+\left( \cfrac { 10-4 }{ 20-4-4 }  \right) \times 10\\ =60+\cfrac { 6 }{ 12 } \times 10\\ =60+\cfrac { 60 }{ 12 } \\ =60+5\\ =65Ans$$

  • Question 6
    1 / -0
    The following data shows distance covered by horses in a tourist spot. Find mode of the distance travelled by the horses.
    Distance(km)$$0-20$$$$20-40$$$$40-60$$$$60-100$$$$100-120$$
    Number of horses$$20$$$$40$$$$30$$$$50$$$$40$$
    Solution

    Distance

    Number of horses

    $$0-20$$

    $$20$$

    $$20-40$$

    $$40$$

    $$40-60$$

    $$30$$

    $$60-80$$

    $$50$$

    $$80-100$$

    $$40$$

    Maximum frequency $$=50$$
    $$Modal class =60-100$$
    Lower value(l) $$=60$$, $${ f }_{ 1 }=50$$
    $${ f }_{ 0- }=30$$, $${ f }_{ 2 }=40$$, $$h=20$$
    $$Mode=l+\left( \cfrac { { f }_{ 1 }-{ f }_{ 0 } }{ { 2f }_{ 1 }-{ f }_{ 0- }{ f }_{ 2 } }  \right) \times h\\ \quad =60+\left( \cfrac { 50-30 }{ 100-30-40 }  \right) \times 20\\ =60+\cfrac { 20 }{ 30 } \times 20\\ =60+\cfrac { 40 }{ 3 } \\ =60+13.2\\ =73.2Ans$$
  • Question 7
    1 / -0
    Find the median for the following data:
    Number of animals
    $$10$$
    $$15$$
    $$25$$
    $$45$$
    $$50$$
    Average life span
    (years)
    $$2$$
    $$1$$
    $$3$$
    $$4$$
    $$5$$
    Solution

    Number of Animal

    Average life span

    Position

    $$10$$

    $$2$$

    $$2$$

    $$15$$

    $$1$$

    $$3$$

    $$25$$

    $$3$$

    $$6$$

    $$45$$

    $$4$$

    $$10$$

    $$50$$

    $$5$$

     $$15$$

    Sum of life span $$=2+1+3+4+5\\ =15(odd\quad number)$$
    The Median is at $$\left( \cfrac { n+1 }{ 2 }  \right) =\left( \cfrac { 15+1 }{ 2 }  \right) =8\quad position$$
    Now, add up the average life span taken as 
    position $$=2,2+3=5,3+3=6,6+4=10$$
    $$8$$th position comes after $$6$$th position but before $$10$$th position.
    So, Median is $$45$$

  • Question 8
    1 / -0
    The percentage of marks obtained by the studentsin a class of $$50$$ are given below. Find the median for the following data.
    Marks$$(\%)$$$$40-50$$$$50-60$$$$60-70$$$$70-80$$$$80-90$$$$90-100$$
    Number of students$$6$$$$12$$$$14$$$$8$$$$6$$$$4$$
    Solution
    Marks$$(\%)$$   Number of students(f) Cumulative frequency(cf)
    $$40-50$$           $$6$$                            $$6$$
    $$50-60$$           $$12$$                        $$18$$
    $$60-70$$           $$14$$                       $$32$$
    $$70-80$$           $$8$$                         $$40$$
    $$80-90$$           $$6$$                         $$46$$
    $$90-100$$         $$4$$                         $$50$$ 
    Median is $$25,26$$
    Median$$=l+\displaystyle\frac{\frac{n}{2}-cf}{f}\times h$$
    where the lower limit,(l) of median class$$= 60$$
    the number of observations,$$(n) = 50$$
    the cumulative frequency of class preceding the median class,$$(cf) = 18$$
    the frequency of median class,$$(f) = 14$$ class size $$(h) = 10$$
    Substituting the above values in the formula, we get
     Median $$=60+\displaystyle\frac{\frac{50}{2}-18}{14}\times 10$$
    $$=60+0.5\times 10$$
    $$=65$$
    Therefore, the median of the above data is $$65$$
  • Question 9
    1 / -0

    The percentage of marks obtained by the students in a class of $$50$$ are given below. Find the mode for the following data.

    Marks$$(\%)$$$$40-50$$$$50-60$$$$60-70$$$$70-80$$$$80-90$$$$90-100$$
    Number of horses$$6$$$$12$$$$14$$$$8$$$$6$$$$4$$
    Solution

     

    Marks

    Number of Horses

    $$40-50$$

    $$6$$

    $$50-60$$

    $$12$$

    $$60-70$$

    $$14$$

    $$70-80$$

    $$8$$

    $$80-90$$

    $$6$$

    $$90-100$$

    $$4$$

    $$Maximum frequency=14$$, Modal class$$=60-70$$
    $$l=60$$, $${ f }_{ 1 }=14$$, $${ f }_{ 0 }=12$$, $${ f }_{ 2 }=8$$
    $$Mode=l+\left( \cfrac { { f }_{ 1 }-{ f }_{ 0 } }{ { 2f }_{ 1 }-{ f }_{ 0- }{ f }_{ 2 } }  \right) \times h\\ \quad =60+\left( \cfrac { 14-12 }{ 28-12-8 }  \right) \times 10\\ =60+\left( \cfrac { 20 }{ 8 }  \right) =60+2.5\quad \quad \\ =62.5Ans\quad $$
  • Question 10
    1 / -0
    The following table of grouped data represents the weight (in kg) of $$100$$ gas cylinders. Calculate the mode weight of a cylinder.
    Weight$$(\%)$$$$3-5$$$$5-7$$$$7-9$$$$9-11$$$$11-13$$$$13-15$$
    Number of gas cylinders$$16$$$$13$$$$15$$$$25$$$$14$$$$17$$
    Solution
    The lower limit ($$l$$) of the modal class $$= 9$$,
    the class size ($$ h$$) $$= 2,$$
    the frequency $$(f_1)$$ of modal class$$ = 25,$$
    the frequency $$(f_0 )$$ of the class preceding the modal class$$ = 15$$,
    the frequency $$(f_2)$$ of the class succeeding
    the modal class $$=14.$$

    Now, using the formula:
    $$\begin{aligned}{l}{\text{Mode}} &= l + \left( {\frac{{{f_1} - {f_0}}}{{2{f_1} - {f_0} - {f_2}}}} \right) \times h\\ &= 9 + \left( {\frac{{25 - 15}}{{(2 \times 25) - 15 - 14}}} \right) \times 2\\ &= 9 + 0.48 \times 2\\& = 9 + 0.96\\ &= 9.96\end{aligned}$$

    Therefore, the mode weight of a cylinder is $$9.96\text{ kg}.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now