Self Studies

Pair of Linear Equations in Two Variables Test - 17

Result Self Studies

Pair of Linear Equations in Two Variables Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If, $$\displaystyle \frac{1}{x}+\frac{1}{y}=k$$ and $$\displaystyle \frac{1}{x}-\frac{1}{y}=k$$, then the value of y .................
    Solution
    Let $$\displaystyle \frac{1}{x}+\frac{1}{y}=k$$   ......(1)
          $$\displaystyle \frac{1}{x}-\frac{1}{y}=k$$   ......(2)
    $$(1)-(2) \Rightarrow \displaystyle \frac{2}{y}=0$$
    $$\therefore$$ the value of $$y$$ does not exist.
  • Question 2
    1 / -0
    If the pair of equations has no solution, then the pair of equations is :
    Solution
    If  a pair of equations has no solution, then the pair of equations is said to be inconsistent.
  • Question 3
    1 / -0
    If the lines intersect at a point, then that point gives the unique solution of the two equations. In this case, the pair of equations is .................
    Solution
    If the lines intersect at a point, then that point gives the unique solution of the given linear equations, and the pair of equations are called consistent pair of equations.
  • Question 4
    1 / -0
    Which of the following pairs of equations represent inconsistent system?
    Solution
    For a pair of linear equations to be inconsistent, the equations must satisfy the given condition which is 
    $$\cfrac{{a}_{1}}{{a}_{2}} = \cfrac{{b}_{1}}{{b}_{2}} \ne \cfrac{{c}_{1}}{{c}_{2}}$$
    Since, the equations $$3x - y = -8$$ and $$3x - y = 24$$ clearly satisfy the above condition $$\cfrac{3}{3} = \cfrac{-1}{-1} \ne \cfrac{-8}{24}$$,  the pair of equations represents inconsistent system.
    In  options A, C and D, 
    $$\cfrac{{a}_{1}}{{a}_{2}} \neq \cfrac{{b}_{1}}{{b}_{2}} $$
  • Question 5
    1 / -0
    The point of intersection of the lines $$y=3x$$ and $$x=3y$$ is :
    Solution
    The point of intersection of lines $$y = 3x$$(black line) and $$x = 3y$$(brown line) must satisfies both the equation.
    From the graph, we can see that solution is (0,0).
    Hence the point of intersection of given lines is at origin i.e. $$\left( 0, 0 \right)$$.

  • Question 6
    1 / -0
    If the lines are parallel, then the pair of equations has no solution. In this case, the pair of equations is ...................
    Solution
    If the lines are parallel, then the given pair of linear equations has no solution. In this case, the pair of linear equations is said to be inconsistent.
  • Question 7
    1 / -0
    Solve, graphically, the following pairs of equations:
    $$x - 5 = 0$$
    $$y+ 4 = 0$$
    Solution
    Given pair of equations is $$x-5=0$$ and $$y+4=0$$
    Plotting these equations in the graph, we get the above image.
    Clearly from the graph, we can find the point of intersection and that point is  
    the point of intersection is $$(5,-4)$$.
    Hence, $$x=5, y=-4$$.

  • Question 8
    1 / -0
    A system of linear equations is given as follows :
    $$a_1x+b_1y+c_1=0$$
    $$a_2x+b_2y+c_2=0$$
    Condition for two lines to have a unique solution is,
    Solution
    $$ Two\quad equations\quad will\quad have\quad a\quad unique\quad solution\quad if,\quad after\quad \\ solving\quad them,\quad the\quad solution\quad is\quad valid\quad i.e\quad the\quad lines\quad actually\quad \\ intersect\quad at\quad a\quad point.$$

    $$\\ Let\quad there\quad be\quad equations\quad \quad { a }_{ 1 }x+{ b }_{ 1 }y+{ c }_{ 1 }=0..........(i)\quad and$$
                                                                 $$\\ { a }_{ 2 }x+{ b }_{ 2 }y+{ c }_{ 2 }=0.........(ii).\quad \quad$$

    $$ Multiplying\quad (i)\quad by\quad { a }_{ 2 }\quad \& \quad (ii)\quad by\quad { a }_{ 1 }\\ and\quad eliminating\quad x\quad by\quad subtraction\quad we\quad get\quad,$$

    $$ \\ y=\dfrac { { a }_{ 1 }{ c }_{ 2 }-{ a }_{ 2 }{ c }_{ 1 } }{ { a }_{ 2 }{ b }_{ 1 }-{ a }_{ 1 }{ b }_{ 2 } } .$$

    $$\\ Again\quad Multiplying\quad (i)\quad by\quad { b }_{ 2 }\quad \& \quad (ii)\quad by\quad { b }_{ 1 }\\ and\quad eliminating\quad y\quad by\quad subtraction\quad we\quad get\quad$$

    $$ \\ x=\dfrac { { b }_{ 2 }{ c }_{ 1 }-{ b }_{ 1 }{ c }_{ 2 } }{ { a }_{ 2 }{ b }_{ 1 }-{ a }_{ 1 }{ b }_{ 2 } } .$$

    $$\\ It\quad is\quad clear\quad that\quad the\quad solution\quad \left( x,y \right) =\left( \dfrac { { b }_{ 1 }{ c }_{ 2 }-{ b }_{ 2 }{ c }_{ 1 } }{ { a }_{ 2 }{ b }_{ 1 }-{ a }_{ 1 }{ b }_{ 2 } } ,\dfrac { { b }_{ 2 }{ c }_{ 1 }-{ b }_{ 1 }{ c }_{ 2 } }{ { a }_{ 2 }{ b }_{ 1 }-{ a }_{ 1 }{ b }_{ 2 } }  \right) \\ will\quad be\quad valid\quad if\quad { a }_{ 2 }{ b }_{ 1 }-{ a }_{ 1 }{ b }_{ 2 }\neq 0\Longrightarrow \dfrac { { a }_{ 1 } }{ { a }_{ 2 } } \neq \dfrac { { b }_{ 1 } }{ { b }_{ 2 } } .$$

    $$\\ Ans-\quad Option\quad B. $$
  • Question 9
    1 / -0
    Value of $$\alpha$$ for which equations
    $$\alpha  x+ 3y = \alpha -3;      12x + \alpha y = \alpha$$ has unique solution.
    Solution
    For a unique solution, we must have $$\displaystyle \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
    i.e., $$\displaystyle \dfrac{\alpha}{12} \neq \dfrac{3}{\alpha}$$
    $$  \Rightarrow \alpha^2 \neq 36$$
    $$  \Rightarrow \alpha \neq 6\ or\ -6$$
    Hence, for all valus of $$\alpha$$ (except $$6$$ and $$-6$$).
    The given pair of linear equations has a unique solution.
  • Question 10
    1 / -0
    Solve the following pair of linear equations using Graphical method:
    $$x\, +\, y\, =\, 8; \quad x\, -\, y\, =\, 2$$. 
    Then $$(x, y)$$ is equal to 
    Solution
    The given simultaneous equations are $$x+y=8 ..... (i) \text{ and } x-y=2 ..... (ii)$$
    From equation $$(i)$$
     $$x$$$$0$$ $$3$$ $$5$$ $$8$$                         
     $$y$$ $$8$$ $$5$$ $$3$$ $$0$$
    From equation $$(ii)$$
     $$x$$$$0$$ $$2$$ $$4$$ $$5$$                       
     $$y$$ $$-2$$ $$0$$ $$2$$ $$3$$
    Plotting $$x+y=8$$(blue line) and $$x-y=2$$(green line) in the graph, we get the point of intersection as $$(5,3)$$.
    Hence, $$(x,y)=(5,3)$$ is the correct answer.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now