$$ Let\quad us\quad take\quad two\quad equations\quad as,\quad$$
$$ \\ { a }_{ 1 }x+{ b }_{ 1 }y+{ c }_{ 1 }=0........(i)\quad and\\ { a }_{ 2 }x+{ b }_{ 2 }y+{ c }_{ 2 }=0.......(ii).$$
$$\\ If\quad the\quad the\quad lines\quad are\quad parallel\quad then\quad the\quad slopes\quad of\quad the\quad two\quad lines\quad \\ should\quad be\quad equal\quad and\quad the\quad intercepts\quad of\quad the\quad two\quad lines\quad \\ should\quad NOT\quad be\quad equal.$$
$$\\ Writing\quad the\quad equations\quad of\quad lines\quad in\quad slope-intercept\quad form\\ we\quad have,\quad$$
$$ (i)\quad as\quad y=\dfrac { -{ a }_{ 1 } }{ b_{ 1 } } x+\left( \dfrac { -{ c }_{ 1 } }{ { b }_{ 1 } } \right) \quad and\quad \\ (ii)\quad as\quad y=\dfrac { -{ a }_{ 2 } }{ b_{ 2 } } x+\left( \dfrac { -{ c }_{ 2 } }{ { b }_{ 2 } } \right) $$
$$\\ Now\quad if\quad the\quad lines\quad are\quad parallel\quad then\quad the\quad slopes\quad are\quad equal.$$
$$\\ i.e\quad \dfrac { -{ a }_{ 1 } }{ b_{ 1 } } =\dfrac { -{ a }_{ 2 } }{ b_{ 2 } } \Longrightarrow \dfrac { { a }_{ 1 } }{ { a }_{ 2 } } =\dfrac { b_{ 1 } }{ b_{ 2 } } ........(iii)$$
$$\\ Also\quad the\quad intercepts\quad are\quad NOT\quad equal.$$
$$\\ i.e\quad \left( \dfrac { -{ c }_{ 1 } }{ { b }_{ 1 } } \right) \neq \left( \dfrac { -{ c }_{ 2 } }{ { b }_{ 2 } } \right) \Longrightarrow \dfrac { { c }_{ 1 } }{ { c }_{ 2 } } \neq \dfrac { { b }_{ 1 } }{ { b }_{ 2 } } ......(iv)$$
$$\\ Combining\quad (iii)\quad \& \quad (iv)\quad we\quad have\quad \dfrac { { a }_{ 1 } }{ { a }_{ 2 } } =\dfrac { b_{ 1 } }{ b_{ 2 } } \neq \dfrac { { c }_{ 1 } }{ { c }_{ 2 }}$$
$$\\ Ans-\quad Option\quad B.\\ \\ \\ $$