Self Studies

Pair of Linear Equations in Two Variables Test - 18

Result Self Studies

Pair of Linear Equations in Two Variables Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A system of linear equations is given as follows :
    $$a_1x+b_1y+c_1=0$$
    $$a_2x+b_2y+c_2=0$$
    Both the lines are parallel only if,
    Solution
    $$ Let\quad us\quad take\quad two\quad equations\quad as,\quad$$
    $$ \\ { a }_{ 1 }x+{ b }_{ 1 }y+{ c }_{ 1 }=0........(i)\quad and\\ { a }_{ 2 }x+{ b }_{ 2 }y+{ c }_{ 2 }=0.......(ii).$$

    $$\\ If\quad the\quad the\quad lines\quad are\quad parallel\quad then\quad the\quad slopes\quad of\quad the\quad two\quad lines\quad \\ should\quad be\quad equal\quad and\quad the\quad intercepts\quad of\quad the\quad two\quad lines\quad \\ should\quad NOT\quad be\quad equal.$$

    $$\\ Writing\quad the\quad equations\quad of\quad lines\quad in\quad slope-intercept\quad form\\ we\quad have,\quad$$

    $$ (i)\quad as\quad y=\dfrac { -{ a }_{ 1 } }{ b_{ 1 } } x+\left( \dfrac { -{ c }_{ 1 } }{ { b }_{ 1 } }  \right) \quad and\quad \\ (ii)\quad as\quad y=\dfrac { -{ a }_{ 2 } }{ b_{ 2 } } x+\left( \dfrac { -{ c }_{ 2 } }{ { b }_{ 2 } }  \right) $$

    $$\\ Now\quad if\quad the\quad lines\quad are\quad parallel\quad then\quad the\quad slopes\quad are\quad equal.$$

    $$\\ i.e\quad \dfrac { -{ a }_{ 1 } }{ b_{ 1 } } =\dfrac { -{ a }_{ 2 } }{ b_{ 2 } } \Longrightarrow \dfrac { { a }_{ 1 } }{ { a }_{ 2 } } =\dfrac { b_{ 1 } }{ b_{ 2 } } ........(iii)$$

    $$\\ Also\quad the\quad intercepts\quad are\quad NOT\quad equal.$$

    $$\\ i.e\quad \left( \dfrac { -{ c }_{ 1 } }{ { b }_{ 1 } }  \right) \neq \left( \dfrac { -{ c }_{ 2 } }{ { b }_{ 2 } }  \right) \Longrightarrow \dfrac { { c }_{ 1 } }{ { c }_{ 2 } } \neq \dfrac { { b }_{ 1 } }{ { b }_{ 2 } } ......(iv)$$

    $$\\ Combining\quad (iii)\quad \& \quad (iv)\quad we\quad have\quad \dfrac { { a }_{ 1 } }{ { a }_{ 2 } } =\dfrac { b_{ 1 } }{ b_{ 2 } } \neq \dfrac { { c }_{ 1 } }{ { c }_{ 2 }}$$

    $$\\ Ans-\quad Option\quad B.\\ \\ \\  $$

  • Question 2
    1 / -0
    STATEMENT - 1 : If the graphs of the two equations are parallel lines, there exists no solution.
    STATEMENT - 2 : The system is called an inconsistent system.
    Solution
    If the graphs of the two equations are parallel lines, then there will be no solution, and the system is called an inconsistent system because the two lines will never intersect each other.
  • Question 3
    1 / -0
    The condition for the pair of equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2 = 0$$ to have a unique solution is -
    Solution
    For unique solution
    $$\displaystyle \frac{a_1}{a_2} \neq \frac{b_1}{b_2} $$
    $$\Rightarrow a_1b_2 - a_2b_1 \neq 0$$
  • Question 4
    1 / -0
    The solution set of $$x + y -1=0$$ and $$3x + 3y -2=0$$ is
    Solution
    $$x + y -1=0\Rightarrow a_1=1,\,b_1=1,\,c_1=-1$$

    $$3x + 3y -2=0\Rightarrow a_2=3,\,b_2=3,\,c_2=-2$$

    $$\displaystyle \dfrac{1}{3} = \dfrac{1}{3} \neq \dfrac{-1}{-2}$$


    $$ \displaystyle \dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}$$, 

    Hence no solution.

    Therefore, solution set for $$x + y -1=0$$ and $$3x + 3y -2=0$$ is an empty set.
  • Question 5
    1 / -0
    Find the solution set of the system of equations: $$\displaystyle \frac{4}{x}+5y=7\:and\:\frac{3}{x}+4y=5.$$
    Solution
    We put $$\dfrac { 1 }{ x } =p$$
    Then the system of given equations becomes
    $$4p+5y=7............(i)$$  &
    $$3p+4y=5........(ii)$$
    $$(i)\times 3\Rightarrow 12p+15y=21........(iii)\quad \& \\ (ii)\times 4\Rightarrow 12p+16y=20.........(iv).\\ (iii)-(iv)\Rightarrow -y=1\\ \Rightarrow y=-1.\quad $$
    Putting $$y=-1$$ in $$(i)$$,
    $$4p+5\times (-1)=7\\ \Rightarrow p=\dfrac { 12 }{ 4 } =3.\\ \therefore x=\dfrac { 1 }{ 3 } .\\ \therefore \left( x,y \right) =\left( \dfrac { 1 }{ 3 }, -1 \right) .\quad $$
    Hence, the answer is $$\left(\dfrac{1}{3},-1\right)$$
  • Question 6
    1 / -0
    The system of linear equation $$ax+by=6$$, $$cx+dy=8$$ has no solution if:
    Solution
    The given equations are $$ax+by = 6$$ and $$cx+dy = 8$$.

    Here, $$a_1=a, b_1=b, c_1=-6\,\,and\,\, a_2=c, b_2=d, c_2=-8$$

    They have no solution if,

    $$\dfrac { a_1 }{ a_2 } =\cfrac { b_1 }{ b_2 } \neq \cfrac { c_1 }{ c_2 }$$.

    Hence,  $$\dfrac { a }{ c } = \cfrac { b }{ d }$$

    $$\Rightarrow ad - bc = 0$$

    So, option D is correct.
  • Question 7
    1 / -0
    The cost of 9 chairs and 3 tables is Rs. 306, while the cost of 6 chairs and 3 tables is Rs. 246. Then the cost of 6 chairs and 1 table is
    Solution
    $$9x+3y=306$$   ---- (1)
    $$6x+3y=246$$   -----(2)
    Subtracting eq(2) from eq(1)
    $$3x=60$$
    $$x=20$$
    Substituting $$x=20$$ in eq(1)
    $$9(20)+3y = 306$$
    $$180+3y=306$$
    $$3y=126$$
    $$y=42$$
    Hence, $$6x+y =162$$.
  • Question 8
    1 / -0
    Check whether the pair of equations $$x + 3y = 6$$, and $$2x - 3y = 12$$ is consistent. If so, solve graphically
    Solution
    The given pair can be written as
    $$x+3y-6=0$$   and  $$ 2x-3y-12=0$$
    Here$$a_1=1,b1=3,c_1=-6...........eq1        and   a_2=2,b_2=-3,c_2=-12.........eq2$$
    $$\therefore \frac{a_1}{a_2}=\frac{1}{2},\frac{b_1}{b_2}=\frac{3}{-6}=\frac{1}{-2}$$
    Hence $$\frac{a_1}{a_2}\neq\frac {b_1}{b_2}$$
    Thus the given pair of equation is consistent.
    To solve them graphically we have
    Consider $$x+3y-6=0$$ 
     $$x=0 \implies y =2$$
     $$x=3 \implies y=1$$
    Join the points by drawing line.
    Consider  $$ 2x-3y-12=0$$
     $$x=0 \implies y =-4$$
     $$x=3 \implies y=-2$$
    Join the two points by drawing line.
    The given pair of linear equation has unique solution $$x=6 $$ and $$y=0$$.

  • Question 9
    1 / -0
    If a pair of linear equations is inconsistent. In the below graph, the lines are _________.

    Solution
    From figure, it is clear that lines are parallel as only parallel lines are inconsistent for a 2 -dimensional reference.
  • Question 10
    1 / -0
    If a pair of linear equations is consistent and dependent. In the below graph, the lines are __________.

    Solution
    If a pair of linear equations is consistent, then the number of solutions can be either one or infinite.
    Here, the lines are dependent as well and hence, have an infinite number of solutions.
    $$\therefore$$ Lines having an infinite number of solutions are coincident
    Answer: B
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now