Self Studies

Pair of Linear Equations in Two Variables Test - 21

Result Self Studies

Pair of Linear Equations in Two Variables Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The pair of linear equations $$ 4x +6y=  9\ and\ 2x+  3y=  6$$ has
    Solution
    Given system of linear equations
    $$4x+6y- 9=0\Rightarrow a_1=4,\,b_1=6,\,c_1=-9$$
    $$2x+3y-6=0\Rightarrow a_2=2,\,b_2=3,\,c_2=-6$$.

    As we know a pair of linear equations is inconsistent (no solution) if 
    $$\cfrac{{a}_{1}}{{a}_{2}} = \cfrac{{b}_{1}}{{b}_{2}} \ne \cfrac{{c}_{1}}{{c}_{2}}$$
    We have $$\dfrac{4}{2}=\dfrac{6}{3} \neq\dfrac{-9}{-6}$$
    Hence, no solution.
  • Question 2
    1 / -0
    The graph of the linear equation $$2x + 3y = 6$$ intersects the $$y-$$axis at the point
    Solution
    $$2x + 3y =6$$
    Since , the line intersects at $$y-$$axis.
    Put $$x =0$$ in the given equation
    $$\Rightarrow y =2$$
    Hence, the line intersects $$y-$$axis at $$(0,2)$$
  • Question 3
    1 / -0
    Determine the vertices of the triangle formed by the lines
    $$y = x, 3y = x $$ and $$  x + y = 8$$.

    Solution
    The vertices of the triangle will be the point of intersection of given lines taken two at a time. So, we need to find the points of intersection of the lines:

    A. Taking 
        $$ y = x $$        $$ \dots (1)$$
        $$ 3y = x$$      $$ \dots (2)$$
    Let, the point of intersection of above two lines is $$A$$.
    Subtract $$(1)$$ from $$(2)$$:
         $$ 2y = 0$$
         $$ y = 0$$
    Put this value of $$y$$ in equation $$(1)$$:
         $$ y=x=0 $$
    Hence, the coordinates of A are $$(0,0) $$.

    B. Taking 
        $$ y = x $$             $$   \dots (2)$$
        $$ x+y = 8$$      $$ \dots (3)$$
    Let, the point of intersection of above two lines is $$B$$.
    Subtract $$(2)$$ from $$(3)$$:
         $$ x+y-y = 8-x$$
         $$ 2x = 8$$
           $$ x= 4$$
    Put this value of $$x$$ in equation $$(3)$$:
         $$ y=x=4 $$
    Hence, the coordinates of B are $$(4,4) $$.

    C. Taking 
        $$ x+y = 8 $$   $$ \dots (3)$$
        $$ x = 3y$$        $$ \dots (1)$$
    Let, the point of intersection of above two lines is $$C$$.
    Subtract equation $$(1)$$ from $$(3)$$:
          $$ x+y-x = 8-3y$$
         $$ y=8-3y$$
         $$4y = 8$$
           $$y=2$$
    Put this value of $$y$$ in equation $$(1)$$:
         $$ x=3(2) = 6 $$
    Hence, the coordinates of C are $$(6,2) $$.

    The coordinates of the triangle are $$(0,0), (4,4)$$ and $$(6,2). $$

  • Question 4
    1 / -0
    The cost of $$4$$ pens and $$4$$ pencil boxes is Rs $$100$$. Three times the cost of a pen is Rs $$15$$ more than the cost of a pencil box. The cost of a pen and a pencil box respectively are 
    Solution
    Let the cost of a pen and a pencil be $$x$$ and $$y$$ respectively.
    $$4x+4y=100$$
    $$x+y=25$$    ...(1)
    $$3x=y+15$$
    $$3x-y=15$$    ...(2)
    Adding (1) and (2), we get
    $$4x=40$$
    $$x=10$$
    Substitute $$x=10$$ in equation (1) to get $$y=15$$.
  • Question 5
    1 / -0
    Solve the following pair of simultaneous equations:
    $$2x+3y = 12; \, \, 5x-3y=9$$
    Solution
    Given equations are
    $$2x+3y=12\quad\quad\dots(i)$$
    $$5x-3y=9\quad\quad\dots(ii)$$

    Add equations $$(i)$$ and $$(ii) $$ to eliminate $$y$$,
    $$\begin{array}{l}\underline {\begin{array}{ccccccccccccccc}{2x}& + &{3y}& = &{12}\\{5x}& - &{3y}& = &9\end{array}} \\\begin{array}{ccccccccccccccc}{7x}&{}&{\;\;\;\;\;\;\;}& = &{\;21}\end{array}\\\quad\;\quad\quad\quad \quad x = 3\end{array}$$

    Substitute this value in equation $$(i)$$,
    $$2(3)+3y=12$$
    $$\Rightarrow 6+3y=12$$
    $$\Rightarrow 3y=6$$
    $$\Rightarrow y=2$$

    Therefore, the solution is $$x=3, y=2$$.
  • Question 6
    1 / -0
    The graph of the linear equation $$2x + 3y = 6$$ is a line which meets the $$x-$$axis at the point
    Solution
    $$2x + 3y =6 $$ will meet the $$x-$$axis at $$y=0$$. 
    For $$y=0$$, $$x =3$$.
    $$\therefore$$ The point is $$(3,0)$$
  • Question 7
    1 / -0
    Are the following pair of linear equations consistent? 
    $$-3x-4y=12$$, 
    $$ 4y+3x=12$$

    Solution
    The given pair of linear  equations can be written as
    $$-3x-4y-12=0  $$        and       $$  3x+4y-12=0$$
    Here $$a_1=-3,b_1=-4,c_1=-12$$
    and $$a_2=3,b_2=4,c_2=-12$$
    $$\therefore \frac{a_1}{a_2}=\frac{-3}{3}=-1$$
    $$\frac{b_1}{b_2}=\frac{-4}{4}=-1$$
    $$\frac{c_1}{c_2}=\frac{-12}{-12}=1$$
    $$\Rightarrow \frac{a_1}{a_2}=\frac{b_1}{b_2}\neq\frac{c_1}{c_2}$$
    Hence the given pair of linear equations is inconsistent.
  • Question 8
    1 / -0
    If $$p+q=k,\ p-q=n$$ and $$k > n$$, then $$q$$ is ________ .
    Solution
    $$p+q=k$$ ------- (1)
    $$p-q=n$$ ------- (2)
    Subtracting (2) from (1),

    $$2q=(k-n)$$
    Since $$k>n$$,

    $$(k-n)$$ is positive, therefore, $$q=\dfrac{k-n}{2}$$, which is positive

  • Question 9
    1 / -0

    Directions For Questions

    If we have two simultaneous equations
    $$ax+by=c$$               -------(1)
    and $$bx+ay=d$$, then in order to solve -------(2)
    we find (1) $$+$$ (2) and then (1) $$-$$ (2), we shall get
    $$(a+b)x+(a+b)y=c+d$$
    i.e. $$\displaystyle x+y =\frac{c+d}{a+b}$$
    and $$(a-b)x-(a-b)y=c-d$$
    i.e. $$x-y=\dfrac{c-d}{a-b}$$
    To find $$x$$, (3)+(4) gives, $$2x=\dfrac{c+d}{a+b}+\dfrac{c-d}{a-b}$$
    $$\Rightarrow  \displaystyle x=\frac{1}{2} \left ( \frac{c+d}{a+b}+\frac{c-d}{a-b} \right )$$
    To find $$y$$, (3)-(4) gives,  $$y=\displaystyle \frac{1}{2} \left ( \frac{c+d}{a+b}-\frac{c-d}{a-b} \right )$$
    Read the above passage carefully and mark the correct choice.

    ...view full instructions

    The solution of
    $$217x+131y=913$$
    $$131x+217y=827$$  is
    Solution
    Let $$ 217x+131y=913$$ .....(1)
    and $$ 131x+217y=827$$ ......(2)
    Here, according to the given passage
    $$ a=217, b=131, c=913$$ and $$d=827$$
    $$ \therefore 2x= \left[ \dfrac { c+d }{ a+b } +\dfrac { c-d }{ a-b }  \right] $$
    $$ =\dfrac { 1740 }{ 348 } +\dfrac { 86 }{ 86 } =\dfrac { 2088 }{ 348 } $$
    $$ \therefore  x=\dfrac { 2088 }{ 348\times 2 } =3$$
    and $$2y= \left[ \dfrac { c+d }{ a+b } -\dfrac { c-d }{ a-b }  \right] $$
    $$ =\dfrac { 1740 }{ 348 } -1=\dfrac { 1392 }{ 348 } $$
    $$ \therefore  y=\dfrac { 1392 }{ 348\times 2 } =2$$
    $$ \therefore x=3, y=2$$
  • Question 10
    1 / -0
    The graphical representation of the pair of equations $$x+2y-4=0$$ and $$2x+4y-12=0$$ is:
    Solution
    For two lines to be parallel,
    $$ \dfrac { a_1 }{ a_2 } =\dfrac { b_1 }{ b_2 } \neq \dfrac { c_1 }{ c_2 }$$ -----equation$$(1)$$
    where, $$a$$ and $$b$$ are coefficients of $$x$$ and $$y$$ and $$c$$ is constant
    Here, the lines are $$x+2y-4=0$$ and $$2x+4y-12=0$$
    $$a_1 =1 , b_1 =2 , c_1 = -4 $$ and $$a_2=2, b_2=4, c_2 =-12$$
    As we can see that,
    $$  \dfrac { 1 }{ 2 } =\dfrac { 2 }{ 4 } \neq \dfrac { -4 }{ -12 }  $$
    We can say that the given lines are parallel.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now