Self Studies

Pair of Linear Equations in Two Variables Test - 22

Result Self Studies

Pair of Linear Equations in Two Variables Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x=a, y=b$$ is the solution of the equations $$x-y=2$$ and $$x+y=4$$, then the values of $$a$$ and $$b$$ are, respectively:
    Solution
    Given, $$x-y=2$$ and $$x+y=4$$. 

    Adding both the equations, we get $$2x=6$$ 
    $$\Rightarrow x=3$$ 

    Putting the value of $$x$$ in the first equation, we get 
    $$3-y=2$$ $$\Rightarrow y=1$$ 

    As stated in the question, $$x=a$$ and $$y=b$$.
    Thus, $$a=3$$ and $$b=1$$
  • Question 2
    1 / -0
    The ages of Hari and Harry are in the ratio $$5:7$$. If four years from now, the ratio of their ages will be $$3:4$$, then the present age of
    Solution
    Suppose Hari's present age and Harry's present age are $$x$$ and $$y$$ years respectively.
    Therefore, $$\dfrac{x}{y}=\dfrac{5}{7}$$
    $$7x-5y=0$$
    $$\Rightarrow x=\dfrac{5y}{7}$$    ...(1)

    After four years, their ages will be $$x+4$$ and $$y+4$$ years respectively.
    Therefore, $$\dfrac{x+4}{y+4}=\dfrac{3}{4}$$
    $$4x+16=3y+12$$
    $$4x-3y=-4$$    ...(2)

    Putting the value of $$x$$ from (1) in equation (2), we get
    $$4\left(\dfrac{5y}{7}\right)-3y=-4$$
    $$20y-21y=-28$$
    $$y=28$$ years

    Putting the above value of $$y$$ in equation (1), we get
    $$x=\dfrac{140}{7} = 20$$ years.

    Hence, option A.
  • Question 3
    1 / -0
    Solve for $$x$$ and $$y$$:
    $$4x+\dfrac{6}{y}=15 $$ ; $$3x-\dfrac{4}{y}=7$$
    Solution
    Given equations are
    $$4x+\cfrac { 6 }{ y } =15$$            ------equation$$(1)$$
    $$ 3x-\cfrac { 4 }{ y } =7$$             --------equation$$(2) $$
    From equation $$(1)$$ and equation $$(2)$$ can be written as
    $$4xy+6=15y$$           -----equation$$(3)$$
    $$3xy-4=7y$$           ------equation$$(4)$$
    Multiplying equation$$(3)$$ by $$3$$ and equation$$(4)$$ by $$4$$ and subtracting
    $$12xy+18=45y$$
    $$12xy-16=28y$$
    After solving, we get $$y=2$$
    From equation$$(1)$$, 
    $$4x+\cfrac { 6 }{ y } =15$$      --------equation$$(1)$$
    $$4x=12$$
    $$x=3,y=2$$
  • Question 4
    1 / -0
    Suresh is half his father's Age. After $$20$$ years, his father's age will be one and a half times the Suresh's age. What is his father's age now?
    Solution
    Let Suresh's present age be $$x$$
    Let Father's present age be $$y$$
    Therefore applying condition no. $$1$$
    $$x=\dfrac{y}{2}$$
    $$y-2x=0$$ ...............................................................(i)
    Also applying condition no. 2
    $$\dfrac{3(x+20)}{2}=y+20$$
    $$2y-3x=20$$ ......................................................(ii)
    Multiplying equation (i) by $$2$$
    $$2y-4x=0$$ ......................................................(iii)
    Subtracting equation (iiifrom equation (ii), we get
    $$(2y-3x-2y+4x)=20$$
    Therefore $$x=20 $$ years.
    Substituting in equation (i), we get
    $$y=40 $$ years
    Hence, the age of the father is $$40$$ years.
  • Question 5
    1 / -0
    Solve the systems of equations:

    $$\displaystyle \frac{x-2}{4} + \frac{y+1}{3} = 2 ; \  \frac{x+1}{7}+ \frac{y-3}{2} = \frac{1}{2}$$
    Solution
    $$\displaystyle \frac{x-2}{4} + \frac{y+1}{3} = 2$$      ......... (1)

    $$\displaystyle \frac{x+1}{7} + \frac{y-3}{2} = \frac{1}{2} $$    ..... (2)

    First, we need to simplify the two equations. Let's multiply both sides of equation (1) by 12 and simplify.

    $$\displaystyle 12 \left ( \frac{x-2}{4} + \frac{y+1}{3} \right ) = 12 (2)$$

    $$3(x-2) + 4(y+1) = 24$$
    $$3x - 6 + 4y + 4 =24$$
    $$3x + 4y - 2 =24$$
    $$3x + 4y = 26$$

    Let's multiply both sides of eq. (2) by 14

    $$\displaystyle 14 \left ( \frac{x+1}{7} + \frac{y-3}{2} \right ) = 14 \left ( \frac{1}{2} \right )$$

    $$2(x+1)+7(y-3)=7$$
    $$ 2x + 2 + 7y - 21 = 7$$
    $$2x + 7y - 19 = 7$$
    $$2x+7y = 26$$

    Now we have the following system to solve
    $$3x+4y = 26 $$      .............. (3)
    $$2x+7y = 26$$      ............... (4)

    Because changing the form of their eq (3) or eq. (4) in preparation for the substitution method would produce a fractional form, let's use the elimination-by-addition method. We can start by multiplying equation (4) by -3
    $$3x+4y=26$$      ............. (5)
    $$-6x - 21y =-78$$   ..........  (6)

    No, we can replace eq. (6) with an eq. we form by multiplying eq. (5) by 2 then adding that result to eq. (6)
    $$3x+4y=26$$    ............ (7)
    $$-13y = -26$$    ............ (8)

    From eq. (8) we can find the value of y.
    $$-13 y = -26  \Rightarrow y=2$$

    Now we can substitute 2 for y in eq. (7)
    $$3x+4y = 26$$
    $$3x + 4(2) = 26$$
    $$3x= 18  \Rightarrow  x=6$$

    The solution set is $$(6, 2).$$
  • Question 6
    1 / -0
    The values of x and y satisfying the two equations $$32x + 33y = 31$$, $$33x + 32y = 34$$ respectively will be
    Solution
    Multiplying $$ 32x+33y=31 $$ with $$ 33 $$, we get $$ 1056x + 1089y = 1023 $$ ---- (1)

    Multiplying $$ 33x+32y=34 $$ with $$ 32 $$, we get $$ 1056x + 1024y = 1088 $$ ---- (2)

    Subtracting (2) from (1),
    $$1056x + 1089y - 1056x - 1024y = 1023 - 1088 $$


    $$ 65y = - 65 $$
    $$ y = -1 $$

    Substituting $$

    y = - 1 $$  in $$ 32x+33y=31 $$ , we get $$ 32x - 33 = 31
     $$32x = 64$$ 
    $$ x = 2 $$
  • Question 7
    1 / -0
    Solution of the equations $$\cfrac{x + 3}{4} + \cfrac{2y + 9}{3} = 3$$ and $$\cfrac{2x - 1}{2} - \cfrac{y + 3}{4} = 4 \cfrac{1}{2}$$ is
    Solution
    $$\dfrac{x+3}{4}+\dfrac{2y+9}{3}=3$$

    Multiplying both sides by $$12$$ we get,

    $$\Rightarrow$$  $$3x+9+8y+36=36$$

    $$\Rightarrow$$  $$3x+8y=-9$$          ----- ( 1 )

    $$\dfrac{2x-1}{2}-\dfrac{y+3}{4}=4\dfrac{1}{2}$$

    $$\dfrac{2x-1}{2}-\dfrac{y+3}{4}=\dfrac{9}{2}$$

    Multiplying both sides by $$4$$, we get

    $$\Rightarrow$$  $$4x-2-y-3=18$$

    $$\Rightarrow$$  $$4x-y=23$$         ---- ( 2 )

    Multiplying equation ( 1 ) by $$4$$,

    $$12x+32y=-36$$         ----- ( 3 )

    Multiplying equation ( 2 ) by $$3$$,

    $$12x-3y=69$$       ---- ( 4 )

    Subtracting equation ( 4 ) from ( 3 ) we get,

    $$\Rightarrow$$  $$35y=-105$$

    $$\therefore$$  $$y=-3$$

    Substituting $$y=-3$$ in equation ( 1 )

    $$3x+8(-3)=-9$$

    $$3x-24=-9$$

    $$3x=15$$

    $$\therefore$$  $$x=5$$

    $$\therefore$$  $$x=5$$ and $$y=-3$$
  • Question 8
    1 / -0
    If $$(3)^{x + y} = 81$$ and $$(81)^{x - y} = 3$$, then the values of $$x$$ and $$y$$ are
    Solution
    $$3^{x+y} = 81$$
    $$\Rightarrow 3^{x+y} = 3^{4}$$
    or $$x+y = 4$$                 ...(i)
    Also $$(81)^{x-y} = 3$$
    $$\Rightarrow 3^{4(x-y)} = 3^{1}$$,
    $$4x-4y = 1$$            ...(ii)
    Solving equations (i) and (ii), we get
    $$x=\frac{17}{8}$$ and $$y = \frac{15}{8}$$
  • Question 9
    1 / -0
    If $$\left (x+y,1 \right )$$  $$=$$  $$\left (3,y-x \right )$$, then $$x$$  $$=$$          , $$y$$  $$=$$         
    Solution
    We have, $${(x+y,1)}={(3,y-x)}$$
    $$\implies x+y=3$$ and $$y-x=1$$
    $$\Rightarrow x+y=3$$ and $$-x+y=1$$
    Adding both equations, we get
    $$2y=4$$
    $$\Rightarrow y=2$$
    Put the value of $$y$$ in $$x+y=3$$, we get
    $$x+2=3$$
    $$\Rightarrow x=1$$
    So, $$\text{C}$$ is the correct option.
  • Question 10
    1 / -0
    If $$\displaystyle \frac{3}{x}- \frac{2}{y} =5$$ and $$\displaystyle \frac{4}{x} - \frac{5}{y} = 2$$, then $$\displaystyle \frac{1}{x} - \frac{1}{y} =?$$

    Where $$ (x, y \neq 0)$$
    Solution
    $$\displaystyle \frac{3}{x} - \frac{2}{y} = 5$$    ........ eq(1)

    $$\displaystyle \frac{4}{x} - \frac{5}{y} = 2$$    ........ eq(2)

    Multiply (1) by $$-4$$ and (2) by $$3$$ and add them

    $$-\displaystyle \frac{12}{x} + \frac{8}{y} = -20$$ ...........eq(3)

    $$\displaystyle \frac{12}{x} - \frac{15}{y}=6$$ .................eq(4)
    adding eq(3) and eq(4)
    $$\displaystyle -\frac{7}{y}= -14  \Rightarrow y = \frac{1}{2}$$

    Put $$y = \displaystyle \frac{1}{2} $$ in eq. (1)

    $$\displaystyle \frac{3}{x} - 4 = 5 \Rightarrow \frac{3}{x} = 9 \Rightarrow x = \frac{1}{3}$$

    $$\displaystyle \frac{1}{x}  = 3$$ and $$\displaystyle \frac{1}{y} = 2$$

    $$\therefore$$ $$\displaystyle \frac{1}{x} - \frac{1}{y} = 3 -2 =1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now