Self Studies

Pair of Linear Equations in Two Variables Test - 23

Result Self Studies

Pair of Linear Equations in Two Variables Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$2^{2x - y} = 32$$ and $$2^{x + y} = 16$$ then $$x^{2} + y^{2}$$ is equal to
    Solution
    $$ Given\quad { 2 }^{ 2x-y }=32\\ \Rightarrow { 2 }^{ 2x-y }={ 2 }^{ 5 }\\ \Rightarrow 2x-y=5----(1)\\ Again\quad { 2 }^{ x+y }=16\\ \Rightarrow { 2 }^{ x+y }={ 2 }^{ 4 }\\ \Rightarrow x+y=4----(2)\\ Adding\quad (1)\quad and\quad (2)\quad we\quad get\\ 3x=9\\ \Rightarrow x=3\\ Substituting\quad x=3\quad in\quad (2)\quad we\quad get\\ y=1.\\ \therefore \quad { x }^{ 2 }+{ y }^{ 2 }={ 3 }^{ 2 }+{ 1 }^{ 2 }=10\quad (Ans) $$
  • Question 2
    1 / -0
    The system of equations $$3x - 4y = 12$$ and $$6x - 8y = 48$$ has
    Solution
    $$3x-4y=12$$ $$\Rightarrow a_1=3,\,b_1=-4,\,c_1=12$$
    $$6x-8y=48$$ $$\Rightarrow a_2=6,\,b_2=-8,\,c_2=48$$

    $$\dfrac{a_1}{a_2}=\dfrac36=\dfrac12$$
    $$\dfrac{b_1}{b_2}=\dfrac{-4}{-8}=\dfrac{1}{2}$$
    $$\dfrac{c_1}{c_2}=\dfrac{12}{48}=\dfrac{1}{4}$$

    $$\therefore\, \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}\ne\dfrac{c_1}{c_2}$$
    The given system of linear equations are inconsistent
    Therefore, the given system of equations has no solution.

  • Question 3
    1 / -0
    If $$6$$ kg of sugar and $$5$$ kg of tea together cost Rs. $$209$$ and $$4$$ kg of sugar and $$3$$ kg of tea together cost Rs. $$131$$, then the cost of $$1$$ kg sugar and $$1$$ kg tea are respectively
    Solution
    Let the price of sugar be $$x$$ and tea be $$y$$.
    Then,  
    $$6x + 5y = 209....(1)$$
    $$4x + 3y = 131....(2)$$

    Multiply equation $$(1)$$ by $$4$$ and equation $$(2)$$ by $$6$$ and then subtract:
                    $$(6x + 5y = 209 )4$$
                    $$(4x + 3y = 131)6$$
    $$.............................................$$
    $$24x + 20y - 24x - 18y = 209\times4 - 131\times 6$$
    $$.............................................$$
    $$2y = 836-786$$
    $$ 2y = 50$$
    $$y = 25$$
    Therefore, $$x = 14$$
    Price of sugar is $$Rs.14$$  and price of tea is $$Rs.25$$ .
  • Question 4
    1 / -0
    Without actually solving the simultaneous equations given below, decide whether simultaneous equations have unique solution, no solution or infinitely many solutions.
    $$\displaystyle \frac{x-2y}{3} =\, 1;\quad 2x\, -\, 4y\, =\, \displaystyle \frac{9}{2}$$
    Solution
    The given equations are
    $$ \dfrac { x-2y }{ 3 } =1$$ and $$ 2x-4y=\dfrac { 9 }{ 2 } $$. 

    The equations can be written as,
    $$ x-2y-3=0$$ ..........(i)
    and $$4x-8y-9=0$$ ........(ii) 

    We know that, for two linear equations
    $$a_{1}x+b_{1}=c_{1}$$ and $$a_{2}x+b_{2}y=c_{2}$$:
    (a) If $$\dfrac{a_{1}}{a_{2}}\ne\dfrac{b_{1}}{b_{2}}$$, the system has exactly one solution.

    (b) If $$\dfrac{a_{1}}{a_{2}}=\dfrac{b_{1}}{b_{2}}=\dfrac{c_{1}}{c_{2}}$$, the system has infinitely many solutions.

    (c) If $$\dfrac{a_{1}}{a_{2}}=\dfrac{b_{1}}{b_{2}}\neq  \dfrac{c_{1}}{c_{2}}$$, the system has no solution.

    Here $$ { a }_{ 1 }=1, { a }_{ 2 }=4, b_{ 1 }=-2, { b }_{ 2 }=-8, { c }_{ 1 }=-3$$ and $$ { c }_{ 2 }=-9$$

    $$ \therefore \ \displaystyle  \frac { { a }_{ 1 } }{ { a }_{ 2 } } =\frac { 1 }{ 4 } , \frac { { b }_{ 1 } }{ { b }_{ 2 } } =\frac { -2 }{ -8 } =\frac { 1 }{ 4 } , \frac { { c }_{ 1 } }{ { c }_{ 2 } } =\frac { -3 }{ -9 } =\frac { 1 }{ 3 } $$

    $$ \Rightarrow \dfrac { { a }_{ 1 } }{ { a }_{ 2 } } =\dfrac { { b }_{ 1 } }{ { b }_{ 2 } } \neq \dfrac { { c }_{ 1 } }{ { c }_{ 2 } } $$  

    Hence, the system of equations is inconsistent and has no solution.
  • Question 5
    1 / -0
    Without actually solving the simultaneous equations given below, decide whether the system has unique solution, no solution or infinitely many solutions.
    $$8y= x - 10; 2x = 3y + 7$$
    Solution
    As we know the condition for the pair of equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2 = 0$$ to have a unique solution is -
    $$\displaystyle \frac{a_1}{a_2} \neq \frac{b_1}{b_2} $$
    Here the given system of linear equation is
    $$
    x\quad -\quad 8y\quad =\quad 10;\\ 2x\quad -3y\quad =7\\$$  
    we have $$\dfrac { 1 }{ 2 } \neq \dfrac { -8 }{ -3 }  ;\\$$
    $$\therefore$$ Unique Solution
  • Question 6
    1 / -0
    Solve the following equations using Graphical method:
    $$4x=y-5; y=2x+1$$

    Then $$(x,y)$$ is equal to
    Solution
    Writing both the equation as intercept  form,
    $$\dfrac { x }{ a } +\dfrac { y }{ b } =1$$
    $$4x=y-5$$
    $$-4x+y=5$$
    $$\Rightarrow \dfrac { x }{ -\dfrac { 5 }{ 4 }  } +\dfrac { y }{ 5 } =1$$
    $$x$$ axis intercept $$=$$ $$-\dfrac { 5 }{ 4 } $$
    $$y$$ axis intercept $$=5$$
    Now $$y=2x+1$$
    $$-2x+y=1$$
    $$\Rightarrow \dfrac { x }{ -\dfrac { 1 }{ 2 }  } +\dfrac { y }{ 1 } =1$$
    $$x$$ axis intercept $$=$$ $$-\dfrac { 1 }{ 2 } $$
    $$y$$ axis intercept $$=1$$
    Drawing both the graphs, we get the following graphs
    $$-2x+y=1\ \implies$$ black line
    $$-4x+y=5\ \implies$$ brown line.
    From the point of contact of both the lines, we get the value of $$x$$ and $$y$$
    $$x=-2$$ and $$y=-3$$
    Answer is $$ (-2,-3)$$.

  • Question 7
    1 / -0
    Find the value of $$k$$ for which the given simultaneous equations have infinitely many solutions:
    $$ 4x\, +\, y\, =\, 7;\quad 16x\, +\, ky\, =\, 28$$
    Solution
    As we know the condition for the pair of equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2 = 0$$ to have infinite solutions is 
    $$\displaystyle \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} $$

    $$\therefore$$ For infinite number of solutions,
    $$
    \\ \\ \dfrac { 4 }{ 16 } =\dfrac { 1 }{ k }  =\dfrac { -7 }{ -28 } ;\quad \quad\\\therefore \quad k\quad =\quad 4
    $$
  • Question 8
    1 / -0
    Find the value of $$k$$ for which the given simultaneous equations have infinitely many solutions:
    $$4y = kx- 10; 3x = 2y + 5$$
    Solution
    As we know the condition for the pair of equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2 = 0$$ to have infinite solutions is
    $$\displaystyle \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} $$

    $$
    kx - 4y = 10; \\ 3x - 2y = 5\\ \\$$ 
    So for infinite no of solutions,
    $$\dfrac { k }{ 3 } =\dfrac { -4 }{ -2 }  =\dfrac { -10 }{ -5 }$$ 
    $$\therefore k =6$$
  • Question 9
    1 / -0
    Find the value of $$k$$ for which the given simultaneous equations have infinitely many solutions:
    $$kx\, -\, y\, +\, 3\, -\, k\, =\, 0;\quad 4x\, -\, ky\, +\, k\, =\, 0$$
    Solution
    Compare the equations $$kx-y+3-k=0$$ and $$4x-ky+k=0$$ with the general equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2=0$$ respectively.
     
    Here, $$\cfrac { { a }_{ 1 } }{ { a }_{ 2 } } =\cfrac { k }{ 4 } ,\cfrac { { b }_{ 1 } }{ { b }_{ 2 } } =\dfrac { -1 }{ -k } =\dfrac { 1 }{ k }$$ and $$\cfrac { { c }_{ 1 } }{ { c }_{ 2 } } =\cfrac { 3-k }{ k }$$.
     
    For a pair of linear equations to have infinitely many solutions : $$\frac { { a }_{ 1 } }{ { a }_{ 2 } } =\frac { { b }_{ 1 } }{ { b }_{ 2 } } =\frac { { c }_{ 1 } }{ { c }_{ 2 } }$$
     
    So, we have $$\cfrac { k }{ 4 } =\cfrac { 1 }{ k } =\cfrac { 3-k }{ k }$$

    We first solve $$\cfrac { k }{ 4 } =\cfrac { 1 }{ k }$$

    which gives $$k^2 = 4$$, i.e., $$k = ± 2$$.

    Also, $$\dfrac { 1 }{ k } =\cfrac { 3-k }{ k }$$

    gives $$k = 3k-k^2$$, i.e., $$ k^2-2k=0$$, which means $$k = 0$$ or $$k = 2$$.

    Therefore, the value of $$k$$, that satisfies both the conditions, is $$k = 2$$. 

    Hence,for $$k = 2$$, the pair of linear equations has infinitely many solutions.
  • Question 10
    1 / -0
    Without actually solving the simultaneous equations given below, decide whether the system has unique solution, no solution or infinitely many solutions.
    $$\displaystyle \dfrac{x}{2} + \displaystyle \dfrac{y}{3} = 4; \displaystyle \dfrac{x}{4} +\displaystyle \frac{y}{6} = 2$$
    Solution
    As we know the condition for the pair of equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2 = 0$$ to have infinite solutions is 
    $$\displaystyle \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} $$
    Here the gine system of linear equations is
    $$\displaystyle \dfrac{x}{2} + \displaystyle \dfrac{y}{3} -4=0; \displaystyle \dfrac{x}{4} +\displaystyle \frac{y}{6} - 2=0$$
    We have  $$\dfrac{4}{2}=\dfrac{6}{3}=\dfrac{-4}{-2}$$
    Hence, the system has infinite no. of solutions.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now