Self Studies

Pair of Linear Equations in Two Variables Test - 24

Result Self Studies

Pair of Linear Equations in Two Variables Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Without actually solving the simultaneous equations given below, decide whether the system has unique solution, no solution or infinitely many solutions.
    $$3x+5y=16; 4x-y=6$$
    Solution
    As we know the condition for the pair of equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2 = 0$$ to have a unique solution is -
    $$\displaystyle \frac{a_1}{a_2} \neq \frac{b_1}{b_2} $$

      We have $$\ $$ $$\dfrac{3}{4} \neq \dfrac{5}{-1}$$
    Hence, Unique Solution
  • Question 2
    1 / -0
    Solve the following equation simultaneously using Graphical method:
    $$x+2y=5; y=-2x-2$$

    Then $$(x,y)$$ is equal to
    Solution
    Given first  line $$x+2y=5$$
    Take two points $$(5,0)$$ and $$(1,2)$$ and join them by drawing a line.
    Another line  $$y=-2x-2$$ 
    Take two points $$(0,-2)$$ and $$(-1,0)$$ and join them by drawing a line.
    We get the graphs 
    $$x+2y=5\ \implies $$ brown line
    $$2x+y=2\ \implies $$ blue line
    the point of intersection is $$(-3,4)$$

  • Question 3
    1 / -0
    Without actually solving the simultaneous equations given below, decide whether the system has unique solution, no solution or infinitely many solutions.
    $$3y=2-x; 3x=6-9y$$
    Solution
    As we know the condition for the pair of equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2 = 0$$ to have infinite solutions is 
    $$\displaystyle \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} $$
    Here the given system of linear equations is
    $$
    x + 3y -2=0;\\ 3x+9y -6=0\\ \dfrac { 1 }{ 3 } =\dfrac { 3 }{ 9 } =\dfrac { -2 }{ -6 } ;\\$$
    $$\therefore $$ The system has infinite number of solutions.
  • Question 4
    1 / -0
    Solve the following simultaneous equations:

    $$\displaystyle \frac{1}{x}\, +\, \frac{1}{y}\, =\, 8;\quad \frac{4}{x}\, -\, \frac{2}{y}\, =\, 2$$
    Solution
    Given equations are
    $$\dfrac { 1 }{ x } +\dfrac { 1 }{ y }  = \ 8\\ \dfrac { 4 }{ x } -\dfrac { 2 }{ y }=\ 2 $$

    Let $$\dfrac { 1 }{ x }  =\ a,\ \dfrac { 1 }{ y }  =\ b$$

    So, $$ a+b\ =\ 8$$ ....... $$(1)$$
    $$\\ 4a\ -\ 2b\ =\ 2$$ ...... $$(2)$$

    Multiply equation $$(1)$$ by $$2$$, we get
    $$2a\ +2b\ =\ 16\ $$ ........ $$(3)$$

    Adding equations $$(2)$$ and $$(3)$$, we get
    $$ 6a=18$$

    $$a=\dfrac { 18 }{ 6 }= 3$$ 

    Put $$a=3$$ in $$a+b=8$$ 
    we get $$ b = 5$$ 

    So $$ x = \dfrac { 1 }{ 3 }$$ and $$y= \dfrac { 1 }{ 5 }$$
  • Question 5
    1 / -0
    Solve the following simultaneous equations :
    $$\displaystyle \frac{16}{x + y}\, +\, \frac{2}{x - y}\, =\, 1;\quad \frac{8}{x + y}\, -\, \frac{12}{x - y}\, =\, 7$$
    Solution
    $$Let \dfrac { 1 }{ x+y }  = a;  \dfrac { 1 }{ x-y } =b$$
    So the equations are 
    $$16a + 2b = 1$$            ...(1)
    $$8a - 12b = 7$$            ...(2)
    Eqn (2) $$\times  2 $$ 
    $$\Rightarrow 16a - 24b = 14$$           ....(3)
    Subtracting eq(1) and eq(3) we get
    $$26b = -13 \Rightarrow b = -\dfrac12$$
    Eqn (1) $$\times  6 \Rightarrow 96a +12b = 6$$            ....(4)
    Adding eqn(4) and eq(2)
    $$104a = 13\\ \therefore a = \dfrac{1}{8}\\ \dfrac { 1 }{ x+y }  = \dfrac { 1 }{ 8 } $$
    $$x+y = 8$$       ...(5)
    $$\dfrac { 1 }{ x-y }  = \dfrac { 1 }{ -2 } \\ x-y = -2 $$           ...(6)
    Adding eq(5) and eq(6)
    $$2x = 6 \Rightarrow x = 3$$
    Substitute for $$x$$ in eqn(5)
    $$\therefore y = 8-3 = 5$$
  • Question 6
    1 / -0
    Solve the following simultaneous equations by substitution method.
    $$2x +3y= -4; \, \, x-5y =11$$
    Solution
    $$2x +3y= -4$$..........(1)
    $$x-5y =11$$
    $$\therefore x=11+5y$$ .............(2)
    Substituting eq. (2) in eq. (1), we get,
    $$2(11+5y)+3y = -4$$
    $$22+10y+3y=-4$$
    $$22+4 = -13y$$
    $$\therefore y = -\dfrac {26}{13}$$

    $$y=-2$$
    Substituting $$y=-2$$ in (1) we get,
    $$x=1$$
  • Question 7
    1 / -0
    Find the value of $$p$$ for which the given simultaneous equations have unique solution:
    $$3x\, +\, y\, =\, 10;\quad 9x\, +\, py\, =\,23$$
    Solution
    As we know the condition for the pair of equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2 = 0$$ to have a unique solution is -
    $$\displaystyle \frac{a_1}{a_2} \neq \frac{b_1}{b_2} $$
    Here the given system of linear equation is
    $$
    3x+y=10;\\ 9x+py=23\\$$
    So for unique solution, we have
    $$ \dfrac { 3 }{ 9 } \neq \dfrac { 1 }{ p } \\ \Rightarrow p\neq 3\quad
    $$

  • Question 8
    1 / -0
    Find the value of $$p$$ for which the given simultaneous equations have unique solution:
    $$8x\, -\, py\, +\, 7\, =\, 0;\quad 4x\, -\, 2y\, +\, 3\, =\, 0$$
    Solution
    As we know the condition for the pair of equations $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2 = 0$$ to have a unique solution is -
    $$\displaystyle \frac{a_1}{a_2} \neq \frac{b_1}{b_2} $$
    Here the given system linear of equations is
    $$
    8x-py+7=0;\\ 4x-2y+3=0$$
    So for the unique solution
    $$\dfrac { 8 }{ 4 } \neq \dfrac { -p }{ -2 } \quad $$  
    $$\\ \Rightarrow p\neq 4\quad\quad$$
  • Question 9
    1 / -0
    Find the values of $$x$$ and $$y$$, if 
    $$\displaystyle \frac{2}{x}\, +\, \frac{6}{y}\, =\, 13;\quad \frac{3}{x}\, +\, \frac{4}{y}\, =\, 12$$
    Solution

    $$\dfrac { 2 }{ x } +\dfrac { 6 }{ y } = 13$$ 

    $$ \dfrac { 3 }{ x } +\dfrac { 4 }{ y } = 12$$ 

    Lets assume, $$\dfrac { 1 }{ x } = a, \dfrac { 1 }{ y } = b$$, then the above equations reduces to

    $$ 2a + 6b = 13$$    ...(1) 

    $$ 3a + 4b = 12 $$   ...(2)

    Multiplying (1) by $$3$$ and (2) by $$2$$, we get

    $$6a +18b = 39 $$    ...(3)

    $$6a + 8b = 24 $$    ...(4)

    Subtracting (3) and (4), we get

    $$10b = 15\Rightarrow b = \dfrac { 3 }{ 2 } $$

    Now, $$ 2a = 13 - 6\times \dfrac { 3 }{ 2 }= 13 - 9 = 4$$

    $$\Rightarrow a = 2$$

    So, $$x = \dfrac { 1 }{ 2 } ; y = \dfrac { 2 }{ 3 } $$


    Hence, option D is the correct answer.

  • Question 10
    1 / -0
    Find the values of the $$x+y$$ and $$x-y$$ from the examples given below without solving for x and y

    $$4x+3y=24;\, \, 3x+4y=25$$
    Solution
    $$\text{The given equations are}$$

    $$4x+3y=24$$                           ...(i)
    $$3x+4y=25$$                           ...(ii)


    On adding (i) and (ii), we get

    $$7x+7y=49\Rightarrow x+y=7$$                      

    On subtracting  (ii) from (i), we get

    $$x-y=-1$$

    $$\therefore x+y=7 \space and \space x-y= -1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now