Self Studies

Pair of Linear Equations in Two Variables Test - 29

Result Self Studies

Pair of Linear Equations in Two Variables Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve the following pair of equations:

    $$\displaystyle \frac{9}{x}-\displaystyle \frac{4}{y}= 8$$, $$\displaystyle \frac{13}{x}+\displaystyle \frac{7}{y}=101$$
    Solution
    The equation $$\dfrac { 9 }{ x } -\dfrac { 4 }{ y } =8$$ can be solved as: 

    $$\dfrac { 9 }{ x } -\dfrac { 4 }{ y } =8$$

    $$ \Rightarrow \dfrac { 9y-4x }{ xy } =8$$

    $$ \Rightarrow 9y-4x=8xy\quad .........(1)$$

    The equation $$\dfrac { 13 }{ x } +\dfrac { 7 }{ y } =101$$ can be solved as: 

    $$\dfrac { 13 }{ x } +\dfrac { 7 }{ y } =101$$

    $$ \Rightarrow \dfrac { 13y+7x }{ xy } =101$$

    $$ \Rightarrow 13y+7x=101xy\quad .........(2)$$

    Multiply the equation 1 by $$7$$ and equation 2 by $$4$$. Then we get the equations:

    $$63y-28x=56xy.........(3)$$

    $$52y+28x=404xy.........(4)$$

    Add equations 3 and 4 to eliminate $$x$$, because the coefficients of $$x$$ are the opposite. So, we get

    $$(63y+52y)+(-28x+28x)=56xy+404xy$$

    i.e. $$115y=460xy$$

    i.e. $$115=460x$$
     
    i.e. $$x=\dfrac { 115 }{ 460 } =\dfrac { 1 }{ 4 }$$

    Substituting this value of $$x$$ in the equation 1, we get

    $$9y-4\left( \dfrac { 1 }{ 4 }  \right) =8\left( \dfrac { 1 }{ 4 }  \right) y\\ \Rightarrow 9y-1=2y\\ \Rightarrow 9y-2y=1\\ \Rightarrow 7y=1\\ \Rightarrow y=\dfrac { 1 }{ 7 }$$  
     
    Hence, the solution of the equations is $$x=\dfrac { 1 }{ 4 } ,y=\dfrac { 1 }{ 7 }$$.
  • Question 2
    1 / -0
    Solve the following pairs of equations, graphically:
    $$\displaystyle\,\frac{x}{2}\,-\,\frac{y}{3}\,=\,3$$ and $$x \,+ \,y \,=\, 1$$
    Solution
    The solution set of equation $$\frac { x }{ 2 } -\frac { y }{ 3 } =3$$ or $$3x-2y=18$$ is as follows:

    If $$x=0$$ then

    $$3\times 0-2y=18\\ \Rightarrow -2y=18\\ \Rightarrow y=-9$$

    If $$x=4$$ then

    $$3\times 4-2y=18\\ \Rightarrow 12-2y=18\\ \Rightarrow y=-3$$

    The required points are $$(0,-9),(4,-3)$$.

    Also, the solution set of equation $$x+y=1$$ is as follows:

    If $$x=0$$ then

    $$0+y=1\\ \Rightarrow y=1$$

    If $$x=4$$ then

    $$4+y=1\\ \Rightarrow y=1-4=-3$$

    The required points are $$(0,1),(4,-3)$$.

    Plot all the above points in the graph. Since the point of intersection in the graph is $$(4,-3)$$.

    Hence the solution is $$x=4,y=-3$$.

  • Question 3
    1 / -0
    Solve the following pairs of linear equations, graphically :
    $$\displaystyle\,2x \,-\, 3y\, =\, -6\,$$ and $$x\, -\,\dfrac{y}{2}\,=\,1$$ 
    Solution
    Given, 
    $$ 2x - 3y = - 6 $$
    $$ \Rightarrow  y = \dfrac {2x}{3} + 2 $$
    Substituting different values of $$ x $$ to get corresponding values of $$ y $$, we get
    $$ ( 0, 2), (3,4), (6,6), (-3, 0)  $$
    Plotting these points on the graph, we get the graph of the equation, $$ 2x - 3y = - 6 $$
    Similarly, given second equation,
    $$ x - \dfrac {y}{2} = 1 $$
    $$ \Rightarrow  y = 2(x-1) $$
    Substituting different values of $$ x $$ to get corresponding values of $$ y $$, we get
    $$ ( 1, 0), (0,-2), (2,2), (-1,-4), (3,4) $$
    Plotting these points on the graph, we get the graph of the equation, $$ y = 2(x-1) $$. 
    The point of intersection of the graphs of the lines is the solution of the equations which is $$ (3,4) $$.

  • Question 4
    1 / -0
    Solve: $$\displaystyle \frac{3}{x}-\displaystyle \frac{2}{y}= 0$$ and $$\displaystyle \frac{2}{x}+\displaystyle \frac{5}{y}= 19$$. Hence, find $$a$$ if $$y= ax+3$$.
    Solution
    Let $$\dfrac{1}{x} = u$$ and $$\dfrac{1}{y} = v$$
    So, the equations will reduce to
    $$3u - 2v = 0$$ ...$$(1)$$
    $$2u + 5v = 19$$ ...$$(2)$$

    Multiplying $$(1)$$ by $$5$$ and $$(2)$$ by $$2$$
    $$15u - 10v = 0$$ ...$$(3)$$
    $$4u + 10v = 38$$ ...$$(4)$$

    Adding $$(3)$$ and $$(4)$$
    $$19u = 28$$
    $$u = 2$$

    Substituting $$u = 2$$ in $$(1)$$, we get
    $$6 - 2v = 0$$
    $$v = 3$$

    $$u = \dfrac{1}{x}$$ So, $$x = \dfrac{1}{u} = \dfrac{1}{2}$$
    $$v = \dfrac{1}{y}$$ So, $$y = \dfrac{1}{v} = \dfrac{1}{3}$$

    $$x = \dfrac{1}{2}, y = \dfrac{1}{3}$$

    $$y = ax + 3$$
    $$\dfrac { 1 }{ 3 } =\dfrac { a }{ 2 } +3\\ \dfrac { a }{ 2 } = -\dfrac { 8 }{ 3 } \\ a = \dfrac { -16 }{ 3 } $$

    Option $$D$$
  • Question 5
    1 / -0
    Solve the following pair of equations:

    $$\displaystyle \frac{6}{x}+\displaystyle \frac{4}{y}= 20, \displaystyle \frac{9}{x}-\displaystyle \frac{7}{y}= 10.5$$
    Solution
    Given equations are

    $$\dfrac { 6 }{ x } +\dfrac { 4 }{ y } =20\quad ...(1)\\ \dfrac { 9 }{ x } -\dfrac { 7 }{ y } =10.5\quad ...(2)$$

    Let $$\dfrac{1}{x} = a$$ and $$\dfrac{1}{y} = b$$

    So, the original equations will reduce to
    $$6a + 4b = 20$$ ...$$(1)$$
    $$9a - 7b = 10.5$$ ...$$(2)$$

    Multiplying $$(1)$$ by $$7$$ and $$(2)$$ by $$4$$, we get
    $$42a + 28b = 140$$ ...$$(3)$$
    $$36a - 28b = 42$$ ...$$(4)$$

    Adding $$(3)$$ and $$(4)$$,
    $$78a = 182$$

    $$a = \dfrac{182}{78} = \dfrac{14}{6} = \dfrac{7}{3}$$

    Substituting $$a = \dfrac{7}{3}$$ in $$(1)$$, we get $$b$$ as
    $$14 + 4b = 20$$

    $$4b = 6$$

    $$b = \dfrac{6}{4} = \dfrac{3}{2}$$

    Now, $$a = \dfrac{1}{x}$$, so $$x = \dfrac{1}{a} = \dfrac{3}{7}$$

    $$b = \dfrac{1}{y}$$, so $$y = \dfrac{1}{b} = \dfrac{2}{3}$$

    $$x = \dfrac{3}{7}, y = \dfrac{2}{3}$$

    Option $$A$$
  • Question 6
    1 / -0
    Solve: $$\displaystyle \frac{34}{3x+4y}+\displaystyle \frac{15}{3x-2y}= 5$$ and $$\displaystyle \frac{25}{3x-2y}-\displaystyle \frac{8.50}{3x+4y}= 4.5$$
    Solution
    On putting $$\dfrac1{3x+4y}=X$$ and $$\dfrac1{3x-2y}=Y$$ in given equations, we get

    $$34X+15Y=5$$                                                      ...(i)

    $$25Y-\dfrac{17}2X=4.5\Rightarrow -17X+50Y=9$$            ...(ii)

    On multiplying (i) by 1 and (ii) by 2 and adding, we get

        $$34X+15Y=5$$
    $$\underline {-34X+100Y=18}$$
                 $$115Y=23$$

    $$\therefore Y=\dfrac{23}{115}=\dfrac15$$

    On putting $$Y=\dfrac15$$ in (i), we get
    $$34X+15\times\dfrac15=5\Rightarrow 34X=2\Rightarrow X=\dfrac1{17}$$

    $$\therefore 3x+4y=17$$                                 ...(iii)
         $$3x-2y=5$$                                  ...(iv)

    On subtracting (iv) from (iii), we get
    $$6y=12\Rightarrow y=2$$

    On putting $$y=2$$ in (iv), we get
    $$3x-4=5\Rightarrow x=\dfrac93=3$$

    Therefore, $$x=3,y=2$$
  • Question 7
    1 / -0
    Solve the following pair of equations:
    $$4x+\displaystyle \frac{6}{y}= 15$$ and $$6x-\displaystyle \frac{8}{y}=14$$
    Solution
    The equation $$4x +\frac { 6 }{ y } =15$$ can be solved as: 

    $$4x+\frac { 6 }{ y } =15\\ \Rightarrow \frac { 4xy+6 }{ y } =15\\ \Rightarrow 4xy+6=15y\quad .........(1)$$

    The equation $$6x -\frac { 8 }{ y } =14$$ can be solved as: 

    $$6x-\frac { 8 }{ y } =14\\ \Rightarrow \frac { 6xy-8 }{ y } =14\\ \Rightarrow 6xy-8=14y\quad .........(2)$$

    Multiply the equation 1 by $$3$$ and equation 2 by $$2$$. Then we get the equations:

    $$12xy+18=45y.........(3)$$

    $$12xy-16=28y.........(4)$$

    Subtract Equation 4 from equation 3 to eliminate $$xy$$, because the coefficients of $$xy$$ are same. So, we get

    $$(12xy-12xy)+(18+16)=45y-28y$$

    i.e. $$17y=34$$

    i.e. $$y=2$$

    Substituting this value of $$y$$ in the equation 1, we get

    $$8x+6=30$$  
     
    i.e. $$8x=30-6=24$$

    i.e. $$x=3$$

    Hence, the solution of the equations is $$x=3 ,y=2$$.
  • Question 8
    1 / -0
    Solve the following pair of equations :
    $$x-y= 0.9$$ and $$\displaystyle \frac{11}{2\left ( x+y \right )}= 1$$
    Solution
    $$x=y+0.9$$
    Substituting in the 2nd equation:
    $$11=2(y+0.9+y)$$
    $$\dfrac{11}{2}=2y+0.9\\5.5-0.9=2y\\4.6=2y\\ \therefore y=2.3$$

    and
    $$x=2.3+0.9=3.2$$
    Therefore, $$x=3.2$$ and $$y=2.3$$
  • Question 9
    1 / -0
    Solve: $$\displaystyle \frac{20}{x+y}+\displaystyle \frac{3}{x-y}= 7$$ and $$\displaystyle \frac{8}{x-y}-\displaystyle \frac{15}{x+y}= 5$$
    Solution
    Let $$ \dfrac {20}{x+y}  + \dfrac {3}{x-y} = 7 $$ --- (1)

    and $$ \dfrac {8}{x-y}  - \dfrac {15}{x+y} = 5 $$ --- (2)

    Multiplying equation  $$ (1) $$ with $$ 3 $$ we get, $$  \dfrac {60}{x+y}  + \dfrac {9}{x-y} = 21 $$ ----- equation $$ (3) $$

    Multiplying equation  $$ (2) $$ with $$ 4 $$ we get, $$ \cfrac {32}{x-y}  - \dfrac {60}{x+y} = 20 $$ ----- equation $$ (4) $$

    Adding equations $$ 3 $$ and $$ 4 $$, we get $$ \dfrac {41}{x-y}  = 41

    => x - y = 1 $$ ---- (5)

    Substituting $$ x-y = 1 $$ in the equation $$ (1) $$, we get $$
    \dfrac {20}{x+y}  + \dfrac {3}{1} = 7 => \dfrac {20}{x+y} = 4$$

     =>$$ x +y= 5 $$ --- (6)

    Adding equations $$ 5 $$ and $$ 6 $$, we get $$ 2x = 6 => x = 3 $$ ---- (5)

    Substituting $$ x = 3 $$ in the equation $$ (5) $$, we get $$ 3-y = 1 => y = 2 $$

  • Question 10
    1 / -0
    The sides of an equilateral triangle are given by $$x+3y$$;  $$3x+2y-2$$ and $$4x+\displaystyle \frac{1}{2}y+1$$ respectively. Find the lengths of the sides of the triangle.
    Solution
    Since it is an equilateral triangle, the lengths of the sides are equal
    So, $$x+3y = 3x+2y-2 = 4x+\dfrac { 1 }{ 2 } y+1$$
    $$ \therefore x + 3y = 3x+2y -2\\ \therefore y = 2x - 2 $$
    $$ 2x - y = 2$$ ...(1) 
    Also, $$ 4x+\dfrac { 1 }{ 2 } y+1 = x+3y$$
    $$\therefore 8x + y + 2 = 2x +6y\\ 6x + 2 = 5y$$
    $$ 6x - 5y = -2$$   ...(2)
    Multiplying eq(1) by  5 we get, 
    $$10x - 5y = 10$$      ...(3)
    Subtracting eq(2) from eq(3) we get, 
    $$4x = 12 \Rightarrow x = 3$$
    $$\therefore y = 2x -2 = 4$$
    The length of one side of equilateral triangle = $$ x +3y $$ =$$ 3 + 3(4) = 15 $$units 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now