Self Studies

Pair of Linear Equations in Two Variables Test - 38

Result Self Studies

Pair of Linear Equations in Two Variables Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The pair of linear equations $$x+y=3, 2x+5y=12$$ has a unique solution $$x=x_1, y=y_1$$ then value of $$x_1$$ is?
    Solution
    Given equations are
    $$x + y = 3$$
    $$2x + 5y = 12 $$
    Since, the system has unique solution at $$x = x_1$$ and $$y=y_1$$
    That means the lines intersect at only one point $$(x_{1},y_{1})$$
    By putting $$x=x_1$$ and $$y=y_1$$ in equations, we get
    $$ x_{1} + y_{1}  = 3 $$     ....$$(1)$$
    $$2 x_{1} +5y_{1}  = 12 $$    ....$$(2)$$
    From equation $$(1)$$, we  have  
    $$ y_1 = 3 - x_{1} $$
    Putting the value of $$y_{1}$$ in equation $$(2)$$, 
    $$\Rightarrow 2x_{1} + 5\left ( 3 - x_{1} \right ) = 12 $$
    $$\Rightarrow 2x_{1} + 15 - 5x_{1} = 12$$
    $$\Rightarrow 2x_{1}  - 5x_{1} = 12 - 15 $$
    $$\Rightarrow  - 3x_{1} = -3 $$
    $$ \Rightarrow x_{1} = \displaystyle \frac{-3}{-3} $$
    $$ \Rightarrow x_{1} = 1$$
  • Question 2
    1 / -0
    Three chairs and two tables cost Rs1,850. Five chairs and three tables cost Rs 2,850. Then the total cost of one chair and one table is
    Solution
    Let cost of one chair be Rs $$ x$$ and cost of one table be Rs $$ y$$
    Now as per the question, 
    $$3x+2y = 1850$$      .....(1)
    $$5x + 3y = 2850$$    ......(2)
    Now mutiplying equation (1) by 5 and equation (2) by 3
    $$15x+10y = 9250$$   .....(3)
    $$ 15x+9y = 8550$$    ......(4)
    Now subtracting equation (4) from equation (3)
    $$\Rightarrow y = 700$$
    Put this value in eq (1), 
    $$\Rightarrow 3x+2\left ( 700 \right ) = 1850$$
    $$3x+1400 = 1850$$
    $$3x = 450$$
    $$ x = 150$$
    Now total cost of 1 chair and 1 table = $$x + y $$
    $$ =150+700= 850$$
    So, total cost of 1 chair and 1 table is Rs 850



  • Question 3
    1 / -0
    If $$2x - 3y = 7$$ and $$(a + b) x - (a + b - 3) y = 4a +b$$ have infinite solutions then $$(a,b) =$$
    Solution
    The equations are
    $$ 2x-3y-7=0$$
    $$  \left (a +b  \right )x-\left (a+b-3  \right )y-(4a+b)=0$$
    Here, $$a_{1}=2,b_{1}=-3,c_{1}=-7$$
    $$ a_{2}=a+b ,b_{2}=-\left (a+b-3  \right ),c_{2}=-(4a+b)$$
    The system of linear equations has infinite solutions
    $$\therefore \displaystyle \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$$
    $$\Rightarrow \displaystyle \frac{2}{a+b}=\frac{-3}{-\left (a+b-3  \right )}=\frac{-7}{-\left (4a+b  \right )}$$
    $$\Rightarrow \displaystyle \frac{2}{a+b}=\frac{3}{\left (a+b-3  \right )}$$
    $$\Rightarrow  2a+2b-6=3a+3b$$
    $$\Rightarrow b=-a-6 $$
    Again, we have
    $$\Rightarrow \displaystyle \frac{3}{\left (a+b-3  \right )}=\frac{7}{\left (4a+b  \right )}$$
    $$\Rightarrow 12a+3b=7a+7b-21$$
    $$\Rightarrow 5a-4b=-21$$
    Putting $$b=-a-6 $$
    $$\Rightarrow 5a-4\left ( -a-6 \right )=-21\Rightarrow 9a=-45$$
    $$\Rightarrow a=-5$$
    Putting  $$ a=-5   \  in \    b=-a-6$$
    $$\Rightarrow  b=-\left (-5  \right )-6\Rightarrow b=-1$$
    $$\Rightarrow  a=-5,b=-1$$
  • Question 4
    1 / -0
    On comparing the ratios $$\frac {a_1}{a_2}, \frac {b_1}{b_2}$$ and $$\frac {c_1}{c_2}$$ find out whether the following pair of linear equations are consistent or inconsistent.
    $$x - 3y = 4 ; 3x + 2y = 1$$
    Solution

    The equations are

    $$\ x-3y-4=0$$
    $$\Rightarrow a_{1}=1,b_{1}=-3,c_{1}=-4$$
    $$\ 3x+2y-1=0$$
    $$\Rightarrow a_{2}=3,b_{2}=2,c_{2}=-1$$

     comparing  $$\frac{a_{1}}{a_{2}} and \frac{b_{1}}{b_{2}}$$

    We have $$\ \frac{1}{3}\neq\frac{-3}{2}$$

    $$\Rightarrow  \frac{a_{1}}{a_{2}}\neq \frac{b_{1}}{b_{2}}$$

    $$\Rightarrow   System  \  has \   unique \   solution$$

    If the system has unique solution then it is said to be consistent system 


     

  • Question 5
    1 / -0
    The graphic representation of the pair of equations $$2x + 4y - 15 = 0$$ and $$x + 2y - 4 = 0$$ gives a pair of
    Solution
    The equations are
    $$2x+4y-15=0 $$
    $$ x+2y-4=0 $$
    Here, $$ a_{1}=2,b_{1}=4,c_{1}=-15$$
    and $$ a_{2}=1,b_{2}=2,c_{2}=-4$$
    $$\displaystyle \frac{a_{1}}{a_{2}}=\frac{2}{1}=2$$
    $$\displaystyle \frac{b_{1}}{b_{2}}=\frac{4}{2}=2$$
    $$\displaystyle \frac{c_{1}}{c_{2}}=\frac{-15}{-4}$$

    $$\Rightarrow \displaystyle \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}\neq\frac{c_{1}}{c_{2}}$$
    $$\Rightarrow$$ The system of equations has no solution.
    $$\therefore$$ Graphical representation of  the given pair of equations is parallel lines
     
  • Question 6
    1 / -0
    For what value of $$k$$, do the equations $$3x - y + 8 = 0$$ and $$6x - ky = - 16$$ represent coincident lines?
    Solution
    The equations are
    $$3x-y+8=0$$
    $$ 6x-ky+16=0$$
    Here, $$ a_{1}=3,b_{1}=-1,c_{1}=8$$
    and $$ a_{2}=6,b_{2}=-k,c_{2}=16$$

    The equation will represent coincident lines only when they have infinite number of solutions.

    $$ \displaystyle \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$$

    $$\Rightarrow \displaystyle \frac{3}{6}=\frac{-1}{-k}=\frac{8}{16} $$

    Taking,
    $$\displaystyle \frac{3}{6}=\frac{-1}{-k}$$

    $$\Rightarrow \displaystyle \frac{1}{2}=\displaystyle \frac{1}{k}$$

    $$\Rightarrow k=2 $$

    Taking,
    $$  \displaystyle \frac{-1}{-k}=\frac{8}{16}$$

    $$\Rightarrow \displaystyle \frac{1}{k}=\frac{1}{2} $$

    $$\Rightarrow k=2$$

    So, the answer is $$k=2$$
  • Question 7
    1 / -0
    $$5$$ pencils and $$7$$ pens together costs Rs. $$50$$ whereas $$7$$ pencils and $$5$$ pens together costs Rs. $$46$$. Thus the cost of one pencil and one pen respectively is:
    Solution
    Let  the  cost  of  one  pencil  be  Rs. $$x$$ and the cost  of  one  pen  be  Rs. $$y$$
    According   to   the   first   condition
    $$5x+7y=50....eq\left (  1\right )$$
    $$\Rightarrow x=\displaystyle \frac{50-7y}{5}$$
    According   to   the   second   condition
    $$7x+5y=46....eq\left ( 2 \right )$$
    Put the value of $$x$$ in $$eq\left ( 2 \right )$$
    $$\Rightarrow \displaystyle \frac{7\left ( 50-7y \right )}{5}+5y=46$$
    $$\Rightarrow 350-49y+25y=230\Rightarrow y=5$$
    Resubstitute the value of $$y$$ to find the value of $$x$$
    $$\Rightarrow x=\displaystyle \frac{50-7(5)}{5}= \frac{50-35}{5}\Rightarrow x=3$$
    $$\therefore$$ cost of one pencil $$=$$ Rs. $$3$$ and cost of one pen $$=$$ Rs. $$5$$   
     
  • Question 8
    1 / -0
    Graphically, the pair of equations $$6x - 3y + 10 = 0, 2x - y + 9 = 0$$ represents two lines which are
    Solution
    The linear equations are
    $$ 6x-3y+10=0$$
    $$ 2x-y+9=0$$
    Here, $$a_{1}=6,b_{1}=-3,c_{1}=10$$
    $$a_{2}=2,b_{2}=-1,c_{2}=9$$
    $$\therefore \displaystyle \frac{a_{1}}{a_{2}}=\frac{6}{2}=3$$
    $$\displaystyle \frac{b_{1}}{b_{2}}=\frac{-3}{-1}=3$$
    $$\displaystyle \frac{c_{1}}{c_{2}}=\frac{10}{9} $$
    $$\Rightarrow \displaystyle \frac{a_{1}}{a_{2}}=\frac{b_{2}}{b_{2}}\neq \frac{c_{1}}{c_{2}}$$
    $$\therefore$$ The lines represented by the given equations are parallel.
     
  • Question 9
    1 / -0
    On comparing the ratios $$\dfrac {a_1}{a_2}, \dfrac {b_1}{b_2}$$ and $$\dfrac {c_1}{c_2}$$ find out whether the following pair of linear equations are consistent or inconsistent.
    $$x - 2y = 3 ; 3x - 6y = 1$$
    Solution

    The equation are
    $$\  x-2y-3=0$$
    $$\Rightarrow a_{1}=1,b_{1}=-2,c_{1}=-3$$
    $$\ 3x-6y-1=0$$
    $$\Rightarrow a_{2}=3,b_{2}=-6,c_{2}=-1$$


    comparing  $$\rightarrow      \dfrac{a_{1}}{a_{2}},\dfrac{b_{1}}{b_{2}},\dfrac{c_{1}}{c_{2}}$$

    We have $$\ \dfrac{1}{3}=\dfrac{2}{6}\neq\dfrac{-3}{-1}$$
    $$\Rightarrow \dfrac{a_{1}}{a_{2}}=\dfrac{b_{1}}{b_{2}}\neq \dfrac{c_{1}}{c_{2}}$$

    from the  above relation we can say that this $$\ System  \  has \   no \   solution$$

    If the system has no solution, then it is said to be the inconsistent system.
     

  • Question 10
    1 / -0
    The equations $$x-y=0.9$$ and $$\displaystyle \frac {11}{x+y}=2$$ have the solution
    Solution
    The equation are
    $$ x-y=0.9$$
    $$\Rightarrow x=0.9+y$$      .....(1)
    $$\displaystyle \frac{11}{x+y}=2$$
    $$\Rightarrow 2x+2y=11$$     .....(2)
    Put the value of $$x$$ in eq(2)
    $$\Rightarrow 2\left (.9+y  \right )+2y=11$$
    $$\Rightarrow 1.8+2y+2y=11$$
    $$\Rightarrow 4y=9.2$$
    $$\Rightarrow y=2.3$$
    $$\Rightarrow x=.9+y\Rightarrow x=.9+2.3=3.2$$
    $$\therefore   x=3.2 ,y=2.3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now