Self Studies

Pair of Linear Equations in Two Variables Test - 39

Result Self Studies

Pair of Linear Equations in Two Variables Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of k for which the given system of equations has a unique solution.
    $$(k- 3)x + 3y = k; kx + ky = 12$$
    Solution
    Comparing $$ \left ( k-3 \right )x +3y = k$$ with $$a_1x+b_1y+c_1=0$$, 

    and $$kx+ky =12$$ with $$a_2x+b_2y+c_2=0$$,

    we get, $$ a_{1} = \left ( k-3 \right ) , a_{2} = k , b_{1} = 3, b_{2}= k$$

    Now, 
    Given system of equations has unique solution
    $$\Rightarrow \dfrac{a_1{}}{a_{2}} \neq \dfrac{b_{1}}{b_{2}}$$

    $$ \dfrac{\left ( k-3 \right )}{k}\neq \dfrac{3}{k}$$

    $$\Rightarrow k^{2}- 3k \neq 3k$$

    $$\Rightarrow k^{2} \neq 6k$$

    $$\Rightarrow k^{2} -6k\neq 0$$

    $$\Rightarrow k(k-6) \neq 0$$

    $$\Rightarrow k \neq 0$$ and $$\ k \neq 6$$

    So $$ k \neq 6$$ is the correct option among given options.
  • Question 2
    1 / -0
    Find the value of $$k$$ for which the given system of equation has no solution.
    $$kx + 2y - 1 = 0$$
    $$5x - 3y + 2= 0$$
    Solution
    The equations are
    $$\Rightarrow kx+2y-1=0\\$$
    $$\Rightarrow a_{1}=k,b_{1}=2,c_{1}=-1\\$$
    $$\Rightarrow 5x-3y+2=0\\$$
    $$\Rightarrow a_{2}=5,b_{2}=-3,c_{2}=2\\$$

    The   given   system   of   equations   has   no   solution
    $$\Rightarrow \displaystyle \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$$

    $$\Rightarrow \displaystyle \frac{k}{5}=\frac{2}{-3}\Rightarrow k=-\frac{10}{3} $$
  • Question 3
    1 / -0
    Find the value of a and b for which the given system of linear equation has an infinite number of solutions.
    $$2x + 3y = 7$$ and $$(a - b) x + (a + b)y = 3a + b - 2$$
    Solution
    Comparing $$2x+3y =7$$ with $$a_1x+b_1y+c_1=0$$, 
    we get,
    $$a_1=2, b_1=3,c_1=-7$$

    Comparing $$\left ( a-b \right )x + \left ( a +b \right )y = 3a + b - 2$$ with $$a_2x+b_2y+c_2=0$$, 
    we get, 
    $$a_2=\left ( a-b \right ), b_2=\left ( a +b \right ), c_2=-(3a + b - 2)$$

    Given system of equation have infinite solutions:
    $$\Rightarrow \dfrac{a_1{}}{a_{2}} =  \dfrac{b_{1}}{b_{2}} = \dfrac{c_{1}}{c_{2}}$$

    $$\Rightarrow \dfrac{2}{a-b}= \dfrac{3}{a+b}= \dfrac{7}{3a + b -2}$$

    From  $$\dfrac{a_1{}}{a_{2}} =  \dfrac{b_{1}}{b_{2}}$$

    $$\Rightarrow \dfrac{2}{a-b}= \dfrac{3}{a+b}$$

    $$\Rightarrow 2a + 2b = 3a-3b$$

    $$\Rightarrow a-5b = 0 .........  (I)$$

    Now from $$\dfrac{b_{1}}{b_{2}} = \dfrac{c_{1}}{c_{2}}$$

    $$\Rightarrow \dfrac{3}{a+b}= \dfrac{7}{3a + b -2}$$

    $$\Rightarrow9a + 3b -6 = 7a + 7b$$

    $$\Rightarrow 9a-7a+3b-7b =6$$

    $$\Rightarrow 2a-4b = 6  ......  (II)$$

    Now, for solving eq $$I$$ and eq $$II$$

    $$a-5b = 0 $$

    $$2a-4b = 6$$

    Multiplying eq $$I$$ by $$2$$

    $$2a - 10b =0$$
             
    $$2a - 4b =6$$

    on subtraction we get

    $$\Rightarrow -6b = -6$$

    $$\Rightarrow b = 1$$

    Now,  substituting $$b$$ value in eq $$I$$

    $$\Rightarrow 2a-10\left ( 1 \right ) = 0$$

    $$2a - 10 = 0$$

    $$ 2a = 10$$

    $$ a = \dfrac{10}{2}$$

    $$ a = 5$$

    $$\Rightarrow a = 5 , b = 1$$
  • Question 4
    1 / -0
    Determine whether the following system of linear equations have no solution, infinitely many solution or unique solutions.

    $$x + 2y = 3, 2x + 4y = 15$$
    Solution
    The equations are
    $$\Rightarrow x+2y-3=0$$
    $$\Rightarrow a_{1}=1,b_{1}=2,c_{1}=-3$$
    $$\Rightarrow 2x+4y-15=0$$
    $$\Rightarrow a_{2}=2,b_{2}=4,c_{2}=-15$$
    $$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{1}{2}$$
    $$\Rightarrow \frac{b_{1}}{b_{2}}=\frac{2}{4}=\frac{1}{2}$$
    $$\Rightarrow \frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}} \neq\dfrac{c_{1}}{c_{2}}$$
     Hence,  the   given   system   of   equations   has   no   solution
  • Question 5
    1 / -0
    Find the value of $$k$$ for which the given system of equations has infinite number of solutions.
    $$5x + 2y = 2k$$ and $$2(k+ 1)x + ky = (3k+ 4)$$
    Solution
    Comparing $$ 5x+2y=2k$$ with $$a_1x+b_1y+c_1=0$$, we get,
    $$a_1=5, b_1=2,c_1=-2k$$

    Comparing $$2(k+1)x+ky=3k+4$$ with $$a_2x+b_2y+c_2=0$$, we get, 
    $$a_2=2(k+1), b_2=k, c_2=-(3k+4)$$

    Now, 
    Given: the equations has infinite no of solutions.
    $$\therefore \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}$$

    $$\dfrac{5}{2(k+1)}=\dfrac{2}{k}=\dfrac{-2k}{-(3k+4)}$$

    When,

    $$\dfrac{5}{2(k+1)}=\dfrac{2}{k}$$

    $$\implies 5k=4(k+1)$$
    $$\implies 5k-4k=4$$
    $$\implies k=4$$

    and 

    $$\dfrac{2}{k}=\dfrac{-2k}{-(3k+4)}$$

    $$\implies 2(3k+4)=2k^2$$
    $$\implies 3k+4=k^2$$
    $$\implies k^2-3k-4=0$$
    $$\implies k^2-4k+k-4=0$$
    $$\implies k(k-4)+(k-4)=0$$
    $$\implies (k-4)(k+1)=0$$

    Either, $$k=4\space  or\space  k=-1$$
    $$k=4$$ is the value that satisfies both the conditions.

    So, $$Option \ A \ is\  correct$$
  • Question 6
    1 / -0
    Find the value of k for which the given system of equations has no solution.$$kx + 3y = k - 3; 12x + ky = k$$
    Solution
    A system of equations, $$a_1x+b_1y+c_1=0$$ and $$a_2x+b_2y+c_2=0$$ has no solution for the following condition:
    $$\displaystyle \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$$

    The equations in the given question are:
    $$kx+3y-k+3=0$$ and $$a_{1}=k,b_{1}=3,c_{1}=3$$
    $$12x+ky-k=0$$ and $$a_{2}=12,b_{2}=k,c_{2}=-k$$
    Substituting the above values in the condition mentioned above for no solution:
    $$\dfrac{a_{1}}{b_{1}}=\dfrac{a_{2}}{b_{2}}$$

    $$\dfrac{k}{12}=\dfrac{3}{k}$$

    $$k^{2}=36$$
    $$\Rightarrow k=6$$
  • Question 7
    1 / -0
    Determine by drawing graphs whether the following pair of equations has a unique solution or not: $$2x - 3y = 6, 4x - 6y = 9$$. If yes, find the solution also
  • Question 8
    1 / -0
    Find the value of $$k$$ for which the given system of equations has a unique solution:
    $$x - ky = 2$$; 
    $$3x + 2y = - 5$$
    Solution

    The equations are
    $$\ x-ky-2=0 $$
    $$\Rightarrow a_{1}=1,b_{1}=-k,c_{1}=-2$$
    $$\ 3x+2y+5=0$$
    $$\Rightarrow a_{2}=3,b_{2}=2,c_{2}=5$$
    The   given   system   of   equations   has   a   unique   solution
    $$\Rightarrow \dfrac{a_{1}}{a_{2}}\neq \dfrac{b_{1}}{b_{2}}$$
    $$\Rightarrow  \dfrac{1}{3}\neq -\dfrac{k}{2}$$
    $$\Rightarrow$$$$k\neq-\dfrac{2}{3}$$

     

  • Question 9
    1 / -0
    Solve:

    $$\frac {4}{9}x+\frac {1}{3}y=1, 5x+2y=13$$
    Solution
    Given system of equations are:
    $$\frac{4}{9}x + \frac{1}{3}y = 1$$  ... (1)
    $$5x+2y = 13$$  ... (2)
    From equation 1 will get:
    $$ 4x + 3y = 9$$
    Now subtracting eq1 and eq2
    $$ 4x +3y = 9$$
    $$ 5x +2y = 13$$
    First multiply eq1 from 2 and eq2 from 2 will get:
    $$8x + 6y = 18$$
    $$15x+6y = 39$$
    now will subtract the equation
    $$ \Rightarrow 8x +6y = 18$$
    $$ -15x -6y = -39$$
    $$\Rightarrow -7x = -21$$
    $$ \Rightarrow x = 3$$
    now substituting x = 3 in eq 2
    $$\Rightarrow 15\left ( 3 \right )+ 6y = 39$$
    $$\Rightarrow 45 + 6y = 39$$
    $$\Rightarrow 6y = 39-45$$
    $$\Rightarrow 6y = -6$$
    $$\Rightarrow y = -1$$
    $$ \Rightarrow x = 3 , y = -1$$

  • Question 10
    1 / -0
    Determine how many solution exist for the following pair of equations $$8x +5y = 9, 16x +10y = 27$$ 
    Solution
    The following pair of equations can be written as

    $$8x+5y-9=0 \ ;    16x+10y-27=0;$$

    Here $$\displaystyle \frac{a_1}{a_2}=\frac{8}{16}=\frac{1}{2}$$

    $$\dfrac{b_1}{b_2}=\dfrac{5}{10}=\dfrac{1}{2}$$

    $$\dfrac{c_1}{c_2}=\dfrac{-9}{-27}=\dfrac{1}{3}$$,

    We can see $$\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}\neq\dfrac{c_1}{c_2}$$

    Hence, the given pair of the linear equation is inconsistent and has no solution.

    For a graphical solution,

    $$8x+5y=9$$

    $$y=\dfrac{9-8x}{5}$$

    $$16x+10y=27$$

    $$y=\dfrac{27-16x}{10}$$

    Now, we can make the table and make the graph as shown in the solution.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now