Self Studies

Pair of Linear Equations in Two Variables Test - 40

Result Self Studies

Pair of Linear Equations in Two Variables Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Determine whether the system of linear equations $$2x + 3y - 5 = 0, 6x + 9y - 15 = 0$$ has a unique solution, no solutions, or an infinite number of solutions.
    Solution
    The equations are
    $$\Rightarrow 2x+3y-5=0$$
    here, $$ a_{1}=2,b_{1}=3,c_{1}=-5$$

    $$\Rightarrow 6x+9y-15=0$$
    here, $$ a_{2}=6,b_{2}=9,c_{2}=-15$$

    $$\Rightarrow \displaystyle \frac{a_{1}}{a_{2}}=\frac{2}{6}= \frac{1}{3} $$

    $$\Rightarrow \displaystyle \frac{b_{1}}{b_{2}}=\frac{3}{9}=\frac{1}{3}$$

    $$\Rightarrow \displaystyle \frac{c_{1}}{c_{2}}=\frac{-5}{-15}=\frac{1}{3}$$

    $$\Rightarrow  \displaystyle \frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{c_{1}}{c_{2}}$$

     Hence, the given system of equations has an infinite number of solutions.
  • Question 2
    1 / -0
    Solve graphically the following pair of linear equations: 
    $$2x + 3y - 12 = 0, 2x - y - 4 = 0$$. 
    Solution
    $$2x+3y-12=0$$
    $$\Rightarrow 2x=12-3y$$
    $$\Rightarrow x=\cfrac{12-3y}{2}$$
    Let, $$y=2$$, then $$x=\cfrac{12-3(2)}{2}=3$$
    Similarly, when $$y=0, x=6$$
    $$2x-y-4=0$$
    $$\Rightarrow 2x=4+y$$
    $$\Rightarrow x=\cfrac{4+y}{2}$$
    Let, $$y=2$$, then $$x=\cfrac{4+2}{2}=3$$
    Similarly, when $$y=0, x=2$$
    Plotting the points above, the intersecting point is $$(3,2)$$
    $$\therefore x=3,y=2$$

  • Question 3
    1 / -0
    Solve the following equations by the substitution method
    $$\dfrac {1}{2}(9x+10y)=23, \dfrac {5x}{4}-2y=3$$
    Solution
    The equations are
    $$\Rightarrow \frac{1}{2}\left ( 9x+10y \right )=23\Rightarrow 9x+10y=46....eq\left ( 1 \right )$$
    $$\Rightarrow  x=\frac{46-10y}{9}$$
    $$\Rightarrow \frac{5x}{4}-2y=3\Rightarrow 5x-8y=12....eq\left ( 2 \right )$$
    Substitute   the   value   of   x   in   eq (2   )
    $$\Rightarrow \frac{5\left (46-10y \right )}{9}-8y=12$$
    $$\Rightarrow 230-50y-72y=108\Rightarrow -122y=-122\Rightarrow y=1$$
    Substitute   the   value   of   y   in   eq (2   ) 
    $$\Rightarrow 5x-8\left (1  \right )=12\Rightarrow 5x=20\Rightarrow x=4$$
    $$\Rightarrow x=4,y=1 $$ 
  • Question 4
    1 / -0
    Solve graphically the pair of equations $$x+3y=6$$, and $$3x-5y=18$$. Hence, find the value of $$K$$ if $$7x+3y=K$$
    Solution
    From the graph the point of intersection is $$(x,y)=(6,0)$$.
    Substituting $$(x,y)=(6,0)$$ in $$7x+3y=K$$, we get
    $$7\times 6+3\times 0=K$$
    i.e $$K=42$$
    Ans- Option D.

  • Question 5
    1 / -0
    If $$2x + y = 23$$ and $$4x - y = 19$$, find the values of $$5y - 2x$$ and $$\dfrac{y}{x} - 2$$.
    Solution
    Given System of Equations are:
    $$2x+y = 23 $$   ...$$(1)$$
    $$4x-y = 19$$   ...$$(2)$$
    Now adding both the equation will have:
    $$ 6x = 42$$
    $$ x = 7$$
    Now substituting $$x = 7$$ in in equation $$(1)$$
    $$\Rightarrow 2\left ( 7 \right ) + y = 23$$
    $$\Rightarrow 14 + y = 23$$
    $$ \Rightarrow y = 9$$
    Now substituting $$x = 7$$ and $$y = 9$$ in $$5y - 2x$$
    $$\Rightarrow 5\left ( 9 \right ) - 2\left ( 7 \right )$$
    $$ \Rightarrow 45-14$$
    $$ \Rightarrow  31$$
    Now Substituting Now substituting $$x = 7$$ and $$y = 9$$ in $$\frac{y}{x}-2$$
    $$ \Rightarrow \dfrac{9}{7}-2$$
    $$\Rightarrow \dfrac{9-14}{7}$$
    $$\Rightarrow \dfrac{-5}{7}$$
  • Question 6
    1 / -0
    Solve the following equations by the substitution method
    $$0.04 x + 0.02y = 5, 0.5x - 0.4y = 30$$
    Solution
    The equations are
    $$\Rightarrow .04x+.02y=5....eq\left ( 1 \right )$$
    $$\Rightarrow  x=\frac{5-.02y}{.04}$$
    $$\Rightarrow .5x-.4y=30....eq\left (2 \right )$$
    Substitute   the   value   of   x  in  eq (2)
    $$\Rightarrow \frac{.5\left (5-.02y \right )}{.04}-.4y=30$$
    $$\Rightarrow 2.5-.01y-.016y=1.2\Rightarrow -.026y=-1.3\Rightarrow y=50$$
    Substitute   the   value   of   y   in   eq (2)
    $$\Rightarrow .5x-.4\left (50  \right )=30\Rightarrow .5x=50\Rightarrow x=100$$
    $$\Rightarrow x=100,y=50 $$ 
  • Question 7
    1 / -0
    Solve the following equations by the substitution method
    $$x = 3y - 19, y = 3x - 23$$
    Solution
    The equations are
    $$\Rightarrow x=3y-19....eq\left ( 1 \right )$$
    $$\Rightarrow y=3x-23....eq\left ( 2 \right )$$
    Substitute   the   value   of   x   in   eq (2 )
    $$\Rightarrow y=3\left (3y-19  \right )-23  $$
    $$\Rightarrow y=9y-57-23\Rightarrow -8y=-80\Rightarrow y=10$$
    Substitute   the   value   of   y   in   eq (1   )
    $$\Rightarrow x=3\left (10  \right )-19\Rightarrow x=30-19\Rightarrow x=11$$
    $$\Rightarrow x=11,y=10  $$
  • Question 8
    1 / -0
    Solve the following pair of equations graphically : $$x + y = 4, 3x - 2y =- 3$$
    Shade the region bounded by the lines representing the above equations and x-axis
    Solution
    Equation (i) is $$x+y=4 $$
    i.e. $$y=4-x$$ and
    $$3x-2y=-3$$
    i.e $$y=\dfrac {(3x+3)}{2}$$
    The point of intersection from the graphs is $$(x,y)=(1,3)$$
    The required area is a  triangle
    Ans- Option B.

  • Question 9
    1 / -0
    Solve the following equations by the substitution method
    $$\dfrac {x+11}{7}+2y=10, 3x=8+\dfrac {y+7}{11}$$
    Solution
    The equations are
    $$\Rightarrow \dfrac{x+11}{7}+2y=10\Rightarrow x+11+14y=70$$
    $$\Rightarrow x+14y=59 ....eq\left ( 1 \right )$$
    $$\Rightarrow x=59-14y$$
    $$\Rightarrow 3x=8+\dfrac{y+7}{11}\Rightarrow 33x=88+y+7$$
    $$\Rightarrow 33x-y=95....eq\left ( 2 \right )$$
    Substitute   the   value   of   x   in   eq (2 )
    $$\Rightarrow 33\left (59-14y  \right )-y=95  $$
    $$\Rightarrow 1947-462y-y=95\Rightarrow 463y=1853\Rightarrow y=4 $$
    $$\Rightarrow x=59-14y\Rightarrow x=59-14\left (4  \right ) \Rightarrow x=3$$
    $$\Rightarrow x=3,y=4$$  
  • Question 10
    1 / -0
    Solve the following equations by the substitution method
    $$11x-8y=27, 3x+5y=-7$$
    Solution
    The equations are
    $$\Rightarrow 11x-8y=27....eq\left ( 1 \right )$$
    $$\Rightarrow  x=\frac{27+8}{11}$$
    $$\Rightarrow 3x+5y=-7....eq\left ( 2 \right )$$
    Substitute   the   value   of   x   in   eq(2   )
    $$\Rightarrow \frac{3\left (27+8y  \right )}{11}+5y=-7$$
    $$\Rightarrow 81+24y+55y=-77\Rightarrow 79y=-158\Rightarrow y=-2$$
    Substitute   the   value   of   y   in   eq (2  )
    $$\Rightarrow 3x+5\left (-2  \right )=-7\Rightarrow 3x=3\Rightarrow x=1$$
    $$\Rightarrow x=1,y=-2 $$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now