Self Studies

Pair of Linear Equations in Two Variables Test - 41

Result Self Studies

Pair of Linear Equations in Two Variables Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Based on equations reducible to linear equations, Solve for x and y: $$6x + 5y = 8xy$$ and $$ 8x + 3y = 7xy$$
    Solution

    The given equations are
    $$\Rightarrow 6x+5y=8xy....eq\left (1  \right )$$

    $$\Rightarrow 8x+3y=7xy....eq\left (2  \right )$$

    $$Divide \   both \   equations  \  by \ \     xy  $$

    $$\Rightarrow \dfrac{6}{y}+\dfrac{5}{x}=8....eq\left ( 3 \right )$$

    $$\Rightarrow \dfrac{8}{y}+\dfrac{3}{1x}=7....eq\left ( 4 \right )$$

    $$Put\ \dfrac{1}{x}=u\  and\ \dfrac{1}{y}=v\  in\   eq\left (3  \right )  and  \left ( 4 \right )$$

    $$\Rightarrow 6v+5u=8....eq\left ( 5 \right )$$

    $$\Rightarrow 8v+3u=7 ....eq\left ( 6\right )$$

    $$Multiply \   eq \   \left (5  \right )\   by   \  3  \  and  \  eq\left ( 6 \right )  \  by\    5 \   and  \  subtract \   both$$

    $$\Rightarrow \left (18v+15u=24 \right )-\left ( 40v+15u=35 \right )$$

    $$\Rightarrow -22v=-11\Rightarrow v=\dfrac{1}{2}$$

    $$Put  \  v=\dfrac{1}{2}  \  in  \  eq\left ( 5\right )$$

    $$\Rightarrow 6\left ( \dfrac{1}{2} \right )+5u=8\Rightarrow u=1$$

    $$Hence,\dfrac{1}{x}= u=1\Rightarrow x=1$$

    $$      \dfrac{1}{y}= v=\dfrac{1}{2}\Rightarrow y=2$$
         

  • Question 2
    1 / -0
    Based on equations reducible to linear equations
    Solve for x and y: $$\dfrac {11}{2x}-\dfrac {9}{2y}=-\dfrac {23}{2}; \dfrac {3}{4x}+\dfrac {7}{15y}=\dfrac {23}{6}$$
    Solution

    The given equations are
    $$\Rightarrow \dfrac{11}{2x}-\dfrac{9}{2y}=-\dfrac{23}{2}....eq\left ( 1 \right )$$

    $$\Rightarrow \dfrac{3}{4x}+\dfrac{7}{15y}=-\dfrac{23}{6}....eq\left ( 2 \right )$$

    Put   $$u=\dfrac{1}{x} $$  and  $$ v=\dfrac{1}{y} $$ in  $$ eq\left (1  \right )$$  and $$ \left ( 2 \right )$$

    $$\Rightarrow \dfrac{11}{2}u-\dfrac{9}{2}v=-\dfrac{23}{2}\Rightarrow 11u-9v=-23....eq\left ( 3 \right )$$

    $$\Rightarrow \dfrac{3}{4}u+\dfrac{7}{15}v=\dfrac{23}{6}\Rightarrow 45u+28v=230 ....eq\left ( 4 \right )$$

    Multiply   $$eq \left (3  \right )$$  by    28   and   $$eq\left ( 4 \right )$$   by   9   and   subtract   both

    $$\Rightarrow \left ( 308u-252v=-644 \right )-\left ( 405u+252v=2070 \right )$$

    $$\Rightarrow 713u=1426\Rightarrow u=2$$

    $$Put\   u=2\   in\   eq\left ( 3 \right )$$

    $$\Rightarrow 11\times2-9v=-23\Rightarrow v=5$$

    $$Hence,  \dfrac{1}{x}= u=2\Rightarrow x=\dfrac{1}{2}$$
        $$  \dfrac{1}{y}= v=5\Rightarrow y=\dfrac{1}{5}$$
         

  • Question 3
    1 / -0
    Based on equations reducible to linear equations
    Solve for x and y: $$9 + 25xy = 53x$$ and $$ 27 - 4xy = x$$
    Solution

    Given systems of equations are:
    $$9+25xy = 53x$$
    $$27-4xy = x$$
    Now using reducible method will get
    Let convert this equation in $$\dfrac{1}{x}\  and\  \dfrac{1}{y}$$ form
    Will take $$xy$$ as $$L.C.M$$ as $$xy$$ is common
    From eq  will get 
    $$\Rightarrow  \dfrac{9}{xy} +25 = \dfrac{53}{y}$$ ...3
    $$\dfrac{27}{xy} - 4 = \dfrac{1}{y}$$  ...4
    Now let  $$\dfrac{1}{xy}  = v  and  \dfrac{1}{y} = u $$
    Now will get 
    $$9v+25 = 53u $$  and  $$27v-4 = u$$
    Now Rearranging both the equation
    $$53u-9v = 25 ...(5)$$
    $$u-27v = -4 ....(6)$$
    Now multiplying eq5 by 3 
    $$\Rightarrow 159u-27v = 75  ...(7)$$
    Now  subtracting eq 7 and eq6
    $$\Rightarrow 159u-27v = 75$$
    $$\Rightarrow -u +27v = 4$$
    $$\Rightarrow 158u = 79$$
    $$\Rightarrow u = \dfrac{1}{2}$$
    Now putting $$u = \dfrac{1}{2}$$ in eq 6
    $$\Rightarrow  \dfrac{1}{2} -27\left ( 2 \right ) v= -4\left ( 2 \right )$$
    $$\Rightarrow  1 - 54v = -8$$
    $$\Rightarrow  54v =  9$$
    $$\Rightarrow  v = \dfrac{9}{54}$$
    $$\Rightarrow v  = \dfrac{1}{6}$$
    Now putting u and v values
    $$\dfrac{1}{y} = u$$
    $$ \Rightarrow \dfrac{1}{y} = \dfrac{1}{2}$$
    $$\Rightarrow y = 2$$
    $$\dfrac{1}{xy} = v$$
    $$\Rightarrow \dfrac{1}{xy} = \dfrac{1}{6}$$
    $$\Rightarrow \dfrac{1}{2x} = \dfrac{1}{6}$$
    $$ \Rightarrow x = \dfrac{6}{2}$$
    $$\Rightarrow x = 3$$
    $$\Rightarrow x = 3 , y = 2$$

  • Question 4
    1 / -0
    Based on equations reducible to linear equations
    Solve for x and y $$\dfrac {2}{x}+\dfrac {3}{y}=2; \dfrac {1}{x}-\dfrac {1}{2y}=\dfrac {1}{3}$$
    Solution
    The given equations are
    $$\Rightarrow \frac{2}{x}+\frac{3}{y}=2....eq\left ( 1 \right )$$
    $$\Rightarrow  \frac{1}{x}-\frac{1}{2y}=\frac{1}{3}....eq\left ( 2 \right )$$
    $$Put   \frac{1}{x}=u   \ and \   \frac{1}{y}=v   \ in\    eq\left ( 1 \right ) \ and  \ \left (2  \right )$$
    $$\Rightarrow 2u+2v=2....eq\left (3  \right )$$
    $$\Rightarrow u-\frac{1}{2}v=\frac{1}{3}\Rightarrow 6u-3v=2.....eq\left (4  \right )$$
    $$Substract   \ eq\left ( 3 \right ) \   and \   eq\left ( 4 \right )$$
    $$\Rightarrow 8u=4\Rightarrow u=\frac{1}{2}$$
    $$put  \  the\    value \   of  \  u  \  in  \  eq\left ( 3 \right )$$
    $$\Rightarrow 2\times \frac{1}{2}+3v=2\Rightarrow v =\frac{1}{3}$$
    $$Hence, \frac{1}{x}=u=\frac{1}{2}\Rightarrow x=2$$
    $$       \frac{1}{y}=v=\frac{1}{2}\Rightarrow y=3$$
  • Question 5
    1 / -0
    On the same axes, draw the graph of each of the following equations: $$2y-x = 8, 5y-x = 14, y- 2x = 1$$. Hence, obtain the vertices of the triangle so formed.
    Solution
    $$2y-x=8$$
    $$\implies x=2y-8$$
    Let, $$y=2$$, then $$x=2(2)-8=-4$$,
    $$y-2x=1$$
    $$\implies y=1+2x$$
    Let, $$x=1$$, then $$y=1+2(1)=3$$
    Similarly, when $$x=2,y=5$$
    and $$5y-x=14$$
    $$\implies x=5y-14$$
    let, $$y=3$$then $$x=5(3)-14=1$$
    Similarly, when, $$y=2,x=-4$$
    Plotting the above points on the graph, we get intersection points
    $$A(-4,2), B(2,5),C(1,3)$$

  • Question 6
    1 / -0
    Solve graphically the pair of linear equations: $$4x - 3y + 4 = 0, 4x + 3y - 20 = 0$$. Find the area of the region bounded by these lines and $$x$$-axis
    Solution
    $$4x-3y+4=0$$
    $$\implies x=\dfrac{-4+3y}{4}$$
    Let, $$y=4$$, then $$x=\dfrac{-4+3(4)}{4}=2$$
    Similarly, when $$y=0, x=-1$$
    $$4x+3y-20=0$$
    $$\implies x=\dfrac{20-3y}{4}$$
    Let, $$y=4$$, then $$x=\dfrac{20-3(4)}{4}=2$$
    Similarly, when $$y=0,x=5$$
    Plotting the above points on the graph, we get, the intersecting point i.e$$(2,4)$$
    Area of the region bounded by these lines and x-axis $$=\dfrac{1}{2}\times 6 \text{units} \times 4 \space \text{units}$$
    $$=12 \space\text{ sq. units.}$$

  • Question 7
    1 / -0
    Based on equations reducible to linear equations
    Solve for x and y: $$\dfrac {2}{x-1}+\dfrac {y-2}{4}=2; \dfrac {3}{2(x-1)}+\dfrac {2(y-2)}{5}=\dfrac {47}{20}$$
    Solution

    The given equations are
    $$\Rightarrow \dfrac{2}{x-1}+\dfrac{y-2}{4}=2......eq(1)$$
    $$\Rightarrow \dfrac{3}{2\left (x-1  \right )}\dfrac{2\left (y-2  \right )}{4}=\dfrac{47}{20}......eq(2)$$
    $$Put   \dfrac{1}{x-1}=u   \ and  \  y-2=v \   in \   eq(1)\    and \   eq(2)$$
    $$\Rightarrow 2u+\dfrac{v}{4}=2\Rightarrow 8u+v=8....eq(3)$$
    $$\Rightarrow \dfrac{3u}{2}+\dfrac{2v}{5}=\dfrac{47}{20}\Rightarrow 30u+8v=47.....eq(4)$$
    $$Multiply  \  eq(3)  \  by \   8$$
    $$\Rightarrow 64u+8v=64.....eq(5)$$
    $$Subtract  \  eq(4) \   and \   eq(5)$$
    $$\Rightarrow \left (64u+8v=64  \right )-\left (30u+8v+47  \right )$$
    $$\Rightarrow 34u=17\Rightarrow u=\dfrac{1}{2}$$
    $$put  \  u=\dfrac{1}{2}  \  in \   eq(3)$$
    $$\Rightarrow 8\times \dfrac{1}{2}+v=8\Rightarrow v=4$$
    $$Hence, u=\dfrac{1}{x-1} =\dfrac{1}{2}\Rightarrow x-1=2\Rightarrow x=3$$
    $$       v=y-2=4\Rightarrow y=6  $$
      
     

  • Question 8
    1 / -0
    Based on equations reducible to linear equations, solve for $$x$$ and $$y$$:
    $$\dfrac {x-y}{xy}=9; \dfrac {x+y}{xy}=5$$
    Solution

    The given equations are
    $$\Rightarrow \dfrac{x-y}{xy}=9\Rightarrow x-y=9xy....eq\left (1  \right )$$
    $$\Rightarrow \dfrac{x+y}{xy}=5\Rightarrow x+y=5xy....eq\left (2  \right )$$
    Divide both eq by $$xy$$
    $$\Rightarrow \displaystyle \frac{1}{y}-\frac{1}{x}=9....eq\left ( 3 \right )$$
    $$\Rightarrow \displaystyle \frac{1}{y}+\frac{1}{x}=5....eq\left ( 4 \right )$$
    Put $$\dfrac{1}{x}=u$$ and $$\dfrac{1}{y}=v$$ in eq $$\left (3  \right )$$ and $$\left ( 4 \right )$$
    $$\Rightarrow v-u=9 ....eq\left ( 5 \right )$$
    $$\Rightarrow v+u=5 ....eq\left ( 6\right )$$
    Subtract eq $$\left (5  \right )$$ and eq$$\left ( 6 \right )$$
    $$\Rightarrow \left (v-u=9 \right )-\left ( v+u=5 \right )$$
    $$\Rightarrow 2v=-14\Rightarrow v=7$$
    Put $$v=7$$ in eq$$\left ( 5\right )$$
    $$\Rightarrow 7+u=5\Rightarrow u=-2$$
    Hence, $$\dfrac{1}{x}= u=-2\Rightarrow x=-\dfrac{1}{2}$$
    $$      \dfrac{1}{y}= v=7\Rightarrow y=\dfrac{1}{7}$$
         

  • Question 9
    1 / -0
    Based on equations reducible to linear equations
    Solve for x and y $$\dfrac {1}{3x}-\dfrac {1}{7y}=\dfrac {2}{3}; \dfrac {1}{2x}-\dfrac {1}{3y}=\dfrac {1}{6}$$
    Solution
    The given equations are
    $$\Rightarrow \dfrac{1}{3x}-\dfrac{1}{7y}=\dfrac{2}{3}....eq\left ( 1 \right )$$
    $$\Rightarrow \dfrac{1}{2x}-\dfrac{1}{3y}=\dfrac{1}{6}....eq\left (2  \right )$$
    Put   $$\dfrac{1}{x}=u$$   and   $$\dfrac{1}{y}=v$$   in   $$eq\left ( 1 \right ) $$  and  $$eq \left (2  \right )$$
    $$\Rightarrow  \dfrac{1}{3}u-\dfrac{1}{7}v=\dfrac{2}{3}\Rightarrow 7u-3v=14....eq\left ( 3 \right )$$
    $$\Rightarrow \dfrac{1}{2}u-\dfrac{1}{3}v=\dfrac{1}{6}\Rightarrow 3u-2v=1....eq\left (4  \right )$$
    $$Substract\   eq\left ( 3 \right )   and\   eq\left ( 4 \right )$$
    $$\Rightarrow 5u=25\Rightarrow u=5$$
    $$put\   the\   value\   of\  u\   in\   eq\left ( 3 \right )$$
    $$\Rightarrow 7\times 5-3v=14\Rightarrow v =7$$
    $$Hence, \dfrac{1}{x}=u=5\Rightarrow x=\dfrac{1}{5}$$
    $$       \dfrac{1}{y}=v=7\Rightarrow y=\dfrac{1}{7}$$
  • Question 10
    1 / -0
    Solve graphically the following pair of equations: $$x -y = 1, 2x + y= 8$$. Shade the area bounded by these lines and the y-axis
    Solution
    From the graph
    x=3,y=2.
    Hence option D.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now