Self Studies

Pair of Linear Equations in Two Variables Test - 45

Result Self Studies

Pair of Linear Equations in Two Variables Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve the following pairs of equations by reducing them to a pair of linear equations:
    $$\displaystyle \dfrac {7x-2y}{xy}=5, \dfrac {8x+7y}{xy}=15$$
    Solution
    The given equations are $$\displaystyle \frac { 7x-2y }{ xy } =5\quad \& \quad \frac { 8x+7y }{ xy } =15.$$
    On simplifying, we get
    $$\displaystyle \frac { 7 }{ y } -\frac { 2 }{ x } =5$$ and $$\dfrac { 8 }{ y } +\dfrac { 7 }{ x } =15\\  $$
    Let $$\displaystyle  \frac { 1 }{ x } =u$$ and $$ \dfrac { 1 }{ y }  $$
    Then the equations reduce to
    $$7v-2u=5$$   ...(i) and
    $$8v+7u=15$$   ...(ii)
    Multiplying (i) by $$8$$ and (ii) by $$7$$, we get
    $$56v-16u=40$$ ...(iii) and
    $$56v+49u=105$$ ...(iv)
    Subtracting (iv) from (iii),
    $$-65u=-65$$     $$\Rightarrow u=1$$.
    $$ \therefore  \dfrac { 1 }{ x } =1\Rightarrow x=1 $$
    Putting $$u=1$$ in $$(i)$$,
    $$ 7v-2\times 1=5\\ \Rightarrow v=1\\ \Rightarrow   \dfrac { 1 }{ y } =1\\ \Rightarrow y=1 $$
    So  $$(x,y)=( 1,1)$$
  • Question 2
    1 / -0
    Form the pair of linear equations in the following problems, and find their solutions (if they exist) by the elimination method:
    Meena went to a bank to withdraw Rs. $$2000.$$ She asked the cashier to give her Rs. $$50$$ and Rs. $$100$$ notes only. Meena got $$25$$ notes in all. Find how many notes of Rs. $$50$$  and Rs. $$100$$  she received
    Solution
    Let $$x$$ and $$y$$ be the number of ' $$50$$ and '$$ 100$$ notes.respectively. 
    Then, $$x +y=25$$ ....(1)
    and $$50x + 100y = 2000$$ ...(2)
    Now multiplying (1) from $$100$$ and (2) from (1) subtracting (2) from (1) will get
    $$\Rightarrow 100\left ( x +y \right )-1\left ( 50x -100y \right ) = 100\times 25 -1\times 2000$$
    $$\Rightarrow 100x+100y-50x-100y = 2500-2000$$
    $$\Rightarrow 50x = 500$$
    $$\Rightarrow x = 10$$
    Now putting $$x$$ in (1)
    $$\Rightarrow 10+y = 25$$
    $$\Rightarrow y = 25-10$$
    $$\Rightarrow y = 15$$
    Hence  Meena  Received $$10$$ notes of Rs. $$50$$ and $$15$$ notes of Rs. $$100$$.
  • Question 3
    1 / -0
    Solve the following pair of equations by reducing them to a pair of linear equations:
    $$\displaystyle \frac {2}{\sqrt x}+\frac {3}{\sqrt y}=2, \frac {4}{\sqrt x}-\frac {9}{\sqrt y}=-1$$
    Solution
    Let us put $$\displaystyle  \frac { 1 }{ \sqrt { x }  } =u\quad \& \quad \frac { 1 }{ \sqrt { y }  } =v $$.
    Then the equations become
    $$2u+3v=2$$ ......(i)  and
    $$4u-9v=-1$$ .....(ii)
    Multiplying (i) by $$2$$ and subtracting the result from (ii),
    $$-15v=-5$$
    $$ \Rightarrow  v= \dfrac { 1 }{ 3 }  $$
    So, $$ \dfrac { 1 }{ \sqrt { y }  } =\dfrac { 1 }{ 3 }$$
    $$ \Rightarrow y=9 $$
    Again, putting $$v= \dfrac { 1 }{ 3 } $$ in $$(i)$$,
    $$ 2u+3\times \dfrac { 1 }{ 3 } =2$$
    $$ \Rightarrow u=\dfrac { 1 }{ 2 } $$ i.e. $$ \dfrac { 1 }{ \sqrt { x }  } =\dfrac { 1 }{ 2 } $$
    $$ \Rightarrow x=4.\\  $$
    So, $$(x,y)=(4,9)$$
    Hence, option C is correct.
  • Question 4
    1 / -0
    For which values of $$a$$ and $$b$$ does the following pair of linear equations have an infinite number of solutions?
    $$2x + 3y = 7$$
    $$(a - b)x + (a + b) y = 3 a + b - 2$$
    Solution
    Let $$2x + 3y - 7 = 0 $$  ........(i)
    and $$(a- b)x + (a + b)y - (3 a + b - 2) = 0$$  .......(ii)
    For infinite number of solutions, we have
    $$\dfrac {a-b}{2}=\dfrac {a+b}{3}=\dfrac {3a+b-2}{7}$$
    For first and second, we have
    $$\dfrac {a-b}{2}=\dfrac {a+b}{3}$$ or $$3a - 3b = 2a + 2b$$
    $$a = 5b$$     ........(i)
    From second and third, we have
    $$\dfrac {a+b}{3}=\dfrac {3a+b-2}{7}$$
    $$7a + 7b = 9a + 3b - 6 \  or \  4b = 2a - 6$$
    $$2b = a - 3$$   ........(ii)
    From (i) and (ii), eliminating $$a$$,
    $$2b = 5b - 3 \Rightarrow b = 1$$
    Substituting $$b= 1$$ in (i), we get $$a = 5$$
  • Question 5
    1 / -0
    Solve the following pair of equations by reducing them to a pair of linear equations:$$6x + 3y = 6xy, 2x + 4y = 5xy$$
    Solution

    $$6x+3y=6xy$$      .........Given


    Multiply by $$\dfrac{1}{xy}$$ we get

    $$\dfrac{6x}{xy}+\dfrac{3y}{xy}=\dfrac{6xy}{xy}$$

    $$\dfrac{6}{y}+\dfrac{3}{x}=6............eq1$$

    $$2x+4y=5xy$$       ...........Given

    Multiply with $$\dfrac{1}{xy}$$we get


    $$\dfrac{2x}{xy}+\dfrac{4y}{xy}=\dfrac{5xy}{xy}$$

    $$\dfrac{2}{y}+\dfrac{4}{x}=5........eq2$$

    Let $$\dfrac{1}{x}=a   \  and \  \dfrac{1}{y}=b$$


    $$a+2b=2.......eq3$$
    $$4a+2b=5.....eq4$$

    Subtracting eq3 and eq4 we get
    $$-3a=-3$$
    $$a=1$$

    Substituting a=1 in eq3 we get 
    $$1+2b=2$$
    $$2b=1$$
    $$b=\dfrac{1}{2}$$

    Thus if $$a=\dfrac{1}{x}=1\Rightarrow x=1$$


    If $$b=\dfrac{1}{y}=\dfrac{1}{2}\Rightarrow y=2$$


    Hence $$x=1$$ and $$y=2$$

  • Question 6
    1 / -0
    Solve the following pair of equations by reducing them to a pair of linear equations: 

    $$\displaystyle \frac {1}{2x}+\frac {1}{3y}=2, \frac {1}{3x}+\frac {1}{2y}=\frac {13}{6}$$
    Solution
    Given pair of equations,

    $$\displaystyle \frac {1}{2x}+\frac {1}{3y}=2, \ \ \frac {1}{3x}+\frac {1}{2y}=\frac {13}{6}$$

    Putting $$\dfrac {1}{x}=u$$  and $$\dfrac {1}{y}=v$$

    We get , 

    $$\displaystyle \frac {1}{2}u+\frac {1}{3}v=2\\ 3u+2v =12 \ ........(1)$$

    $$ \dfrac {1}{3}u+\dfrac {1}{2}v=\dfrac {13}{6}\\ 2u+3v = 13\   .........(2)$$

    Multiplying $$(1)$$ by $$3$$ and $$(2)$$ by $$2$$, 

    $$3 (3u + 2v)=3 \times 12\ .........(3)$$  

    $$2(2u+ 3v)=2 \times 13\ .........(4)$$  

    then subtract $$(4)$$ from $$(3)$$, we get

    $$3 (3u + 2v) - 2(2u+ 3v) = 3 \times 12 - 2 \times 13$$

    $$ 9u - 4u = 36 - 26\\ 5u=10\Rightarrow u = 2$$

    Then substituting $$u = 2$$ in $$(1)$$, we get

    $$\Rightarrow 6 + 2v = 12$$

    $$\Rightarrow v=3$$

    Now, $$u = 2$$ and $$v = 3$$

    $$\Rightarrow \dfrac {1}{x}=2$$ and $$\dfrac {1}{y}=3\Rightarrow x=\dfrac {1}{2}$$ and $$y=\dfrac {1}{3}$$
  • Question 7
    1 / -0
    For which value of k will the following pair of linear equations have no solution?
    $$3x + y = 1$$
    $$(2k - 1) x + (k -1) y = 2k + 1$$
    Solution

    The given pair of equations are:
    $$3x+y = 1...(1)$$
    $$\left ( 2k-1 \right )x +\left ( k-1 \right )y = 2k+1..(2)$$
    Now rearranging eq1 and eq2 will get
    $$3x+y-1=0...(3)$$
    $$\left ( 2k-1 \right )x +\left ( k-1 \right )y -\left( 2k+1 \right )= 0..(4)$$
    Now compare with
    $$a_{1} = 3, b_{1} = 1, c_{1} = -1$$
    $$a_{2} = 2k-1, b_{2} = k-1, c_{2} = -\left( 2k+1 \right )$$
    Now we get
    $$ \dfrac{a_{1}}{a_{2}} =\dfrac{3}{2k-1} , \dfrac{b_{1}}{b_{2}} = \dfrac{1}{k-1},\dfrac{c_{1}}{c_{2}} = \dfrac{-1}{-\left( 2k+1 \right )} $$
    Now will take
    $$ \dfrac{a_{1}}{a_{2}} = \dfrac{b_{1}}{b_{2}} $$
    $$\Rightarrow \dfrac{3}{2k-1} = \dfrac{1}{k-1}$$
    $$\Rightarrow 3k-3= 2k-1$$
    $$\Rightarrow 3k-2k = -1+3$$
    $$\Rightarrow k = 2$$
    Hence $$ k =2 $$ is the value.


  • Question 8
    1 / -0
    Solve the following pair of equations by reducing them to a pair of linear equations:$$\dfrac {4}{x}+3y=14, \dfrac {3}{x}-4y=23$$
    Solution
    Given
    $$\dfrac{4}{x}+3y=14$$

    $$\dfrac{3}{x}-4y=23$$

    Let$$\dfrac{1}{x}=a$$

    $$4a+3y=14.......eq1$$
    $$3a-4y=23........eq2$$

    multiply eq1 by 4 and eq2 by 3 we get
    $$16a+12y=56......eq3$$
    $$9a-12y=69.........eq4$$

    Adding eq3 and eq4 we get
    $$25a=125$$
    $$a=5$$

    Substituting $$a=5$$ in eq1 we get
    $$4\times 5+3y=14$$
    $$3y=14-20$$
    $$3y=-6$$
    $$y=-2$$

    Hence $$\dfrac{1}{x}=5$$    then $$x=\dfrac{1}{5},y=-2$$
  • Question 9
    1 / -0
    A fraction becomes $$\dfrac  {1}{3}$$ when $$1$$ is subtracted from the numerator and it becomes $$\dfrac  {1}{4}$$ when $$8$$ is added to its denominator. Find the fraction.
    Solution
    Let the fraction be $$\dfrac {x}{y}$$

    Now as per the question we will have

    $$\dfrac {x-1}{y} = \dfrac {1}{3}..(1)$$

    $$\dfrac {x}{y+8} = \dfrac {1}{4}..(2)$$

    From eq1 will get

    $$3x-y = 3...(3)$$

    From eq2 will get

    $$4x-y = 8...(4)$$

    Now subtract eq4 from eq3 

    $$\Rightarrow 3x-y-4x+y = 3-8$$

    $$\Rightarrow -x = -5$$

    $$\Rightarrow x = 5$$

    Now put x in eq 4 will get

    $$\Rightarrow 4 \times 5-y = 8$$

    $$\Rightarrow  20-y =8$$

    $$\Rightarrow  -y = 8-20$$

    $$\Rightarrow  -y = -12$$

    $$\Rightarrow  y = 12$$

    Hence fraction will be $$\dfrac {5}{12}$$
  • Question 10
    1 / -0
    Sum of two numbers is $$35$$ and their difference is $$13$$. Then the numbers are
    Solution


    $${\textbf{Step -1: Framing equations}}$$

                   $$\text{Without loss of generality, suppose,}$$ $$ x$$ $${\text{and}}$$ $$ y$$ $${\text{be two numbers and }} x > y.$$

                   $${\text{Given that, sum of two numbers is 35}}{\text{.}}$$

                   $$ \Rightarrow x + y = 35$$                    $$\ldots \left( 1 \right)$$

                   $${\text{Difference between these two numbers is 13}}{\text{.}}$$

                   $$ \Rightarrow x - y = 13$$                    $$ \ldots \left( 2 \right)      $$


    $${\textbf{Step -2: Adding equation }}\left( \mathbf 1 \right)$$ $${\textbf{and equation }}\left(\mathbf 2 \right)\textbf .$$

                   $$ \Rightarrow x + y + \left( {x - y} \right) = 35 + 13$$

                   $$ \Rightarrow 2x = 48$$

                   $$ \Rightarrow x = 24$$

                   $${\text{Substituting the value of}}$$ $$x$$ $${\text{in equation }}\left( 1 \right)$$ $${\text{we get,}}$$

                   $$ \Rightarrow 24 + y = 35$$

                   $$ \Rightarrow y = 35 - 24$$

                   $$ \Rightarrow y = 11$$

                   $${\text{Hence, these two numbers are 24 and 11}}{\text{.}}$$

    $${\textbf{ Hence, option (C) is correct answer.}}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now