Self Studies

Pair of Linear Equations in Two Variables Test - 51

Result Self Studies

Pair of Linear Equations in Two Variables Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of a and b using substitution method:
    $$a + b = 3$$ and $$-3a + 2b = 1$$
    Solution
    $$a + b = 3$$ ------- (1)
    $$-3a + 2b = 1$$  ------ (2)
    From equation 1: 
    $$a = 3 - b$$
    Substitute the value of a in equation 2 :
    $$-3a + 2b = 1$$
    $$-3(3- b) + 2b = 1$$
    $$-9 + 3b + 2b = 1$$
    $$5b = 10$$
    $$b = \dfrac{10}{5} = 2$$
    Now, Substitute $$b = 2$$ in equation 1:
    $$a + b = 3$$
    $$a + 2 = 3$$
    $$a = 3- 2$$
    $$a = 1$$
    Therefore the solution is: $$a = 1$$ and $$b = 2$$
  • Question 2
    1 / -0
    Solve the equations using the method of substitution method :
    $$3x+4y=-43$$ and $$-2x+3y=11$$
    Solution
    $$3x+4y=-43$$ ------- (1)
    $$-2x+3y=11$$  ------ (2)
    From equation 1:
    $$3x+4y=-43$$
    $$4y=43-3x$$
    $$y=\frac{43-3x}{4}$$
    Substitute the value of $$y$$ in equation 2:
    $$-2x+3(\frac{43-3x}{4})=11$$
    $$-8x + 129-9x= 44$$
    $$-17x = 44-129$$
    $$x =\frac{-85}{-17}=5$$
    The substitute the value of $$x$$ in equation 1:
    $$3x+4y=43$$
    $$3(5)+4y=43$$
    $$15+4y=43$$
    $$4y=43-15$$
    $$4y=28$$
    $$y=\frac{28}{4}$$
    $$y=7$$ 
    Therefore the solution is: 
    $$x = 5$$ and $$y=7$$ 
  • Question 3
    1 / -0
    Solve the equations using graphical method: $$2x-  y = 2$$ and $$-4x-  y = -4$$
    Solution
    $$2x- y = 2$$ ----- (1)
    $$-4x- y = -4$$ ----- (2)
    From equation (1)
    $$y = 2x - 2$$  ------ (3)
    Assume the value of x = 1, 2 and put those values in equation (3)
    If $$x = 1, y = 2(1)- 2 = 0$$
    If $$x = 2, y = 2(2) - 2=2$$
    Now plotting (1, 0), (2, 2) and joining them, we get a straight line.
    From equation (2),
    $$-4x- y = -4$$
    $$y = -4x + 4$$ ------ (4)
    Assume the value of $$x = 1, 2$$ and put those values in equation (3)
    If $$x = 1, y =-4(1)+4= 0$$
    If $$x = 2, y = -4(1)+4 = -2$$
    Plotting (1, 0), (2, -2) and joining them, we get another straight line.
    These lines intersect at the point (1, 0) and therefore the solution of the equation is $$x = 1, y = 0$$ 

  • Question 4
    1 / -0
    Solve the equations using graphical method: $$x + y = 1$$ and $$2x -3y = 7$$
    Solution
    $$x + y = 1$$    ------- (I)
    $$2x - 3y = 7$$    ------ (II)

  • Question 5
    1 / -0
    Solve the following equations using substitution method:
    $$2x+3y=13$$  and $$4x+5y=23$$
    Solution
    Given: $$2x+3y=13$$  ------(1)
                $$4x+5y=23$$  ------(2)

    From equation (1),
    $$2x+3y =13$$
    $$y=\cfrac{13-2x}{3}$$

    Substitute the value of $$y$$ in equation (2):
    $$4x+5y=23$$
    $$4x+5(\cfrac{13-2x}{3}) = 23$$
    $$12x+65-10x=69$$
    $$2x=69-65$$
    $$2x=4$$
    $$x=2$$

    Then substitute the value of $$x$$ in equation (1):
    $$2(2)+3y=13$$
    $$4+3y=13$$
    $$3y=13-4$$
    $$3y=9$$
    $$y=3$$
    Therefore solution is $$x=2$$ ans $$y=3$$ 
  • Question 6
    1 / -0
    Solve the equation using substitution method:
    $$3x+y+1=0$$  and  $$3x-4y=10$$ 
    Solution
    $$3x+y+1=0$$  ------- (1)  
    $$3x-4y=10$$  --------(2)
    From equation (1)
    $$3x+y=-1$$
    $$y=-1-3x$$
    Substitute the value of $$y$$ in equation (2)
    $$3x-4(-1-3x)=10$$
    $$3x+4+12x=10$$
    $$15x=10-4$$
    $$x=\dfrac{6}{15}$$ or $$\dfrac{2}{5}\simeq  0.4$$ 
    The substitute the value of x in equation (1)
    $$3x+y=-1$$
    $$3(\dfrac{2}{5})+y=-1$$
    $$6+5y=-5$$
    $$5y=-5-6$$
    $$5y=-11$$
    $$y=\dfrac{-11}{5}$$ or -2.2
    therefore solution is $$x= 0.4$$ and $$y=-2.2$$ 
  • Question 7
    1 / -0
    Solve the equation using elimination method:
    $$\displaystyle \frac{3}{x}+\frac{2}{y} = 7$$ and $$\displaystyle \frac{4}{x} -\frac{1}{y}=2$$
    Solution
    Let us assume $$\cfrac{1}{x} = u; \cfrac{1}{y} = v$$, then the equation becomes,
    $$3u+2v=7$$     .....(1)
    $$4y-v=2$$     .....(2)
    Multiply the equation (2) by $$2$$ and then subtract the equation
    $$3u+2v=7$$
    $$8u-2v=4$$
    __________
    $$11u      =11$$
    $$\Rightarrow u=\cfrac{11}{11}=1$$
    $$\Rightarrow u=\cfrac{1}{x}; x=1$$
    Put the value of $$u$$ in equation (2), we get
    $$4u-v=2$$
    $$\Rightarrow 4(1)-v=2$$
    $$\Rightarrow 4-2=v$$
    $$\Rightarrow v=2$$
    Therefore, the solution is $$\left(1, \cfrac{1}{2}\right)$$.
  • Question 8
    1 / -0
    Solve the equation using substitution method:
    $$x+y=-3$$ and $$x+2y=4$$
    Solution
    $$x+y=-3$$ ------(1)
    $$x+2y=4$$  ------(2)
    From equation (1)
    $$x+y=-3$$
    $$y=-3-x$$
    Substitute the value of $$y$$ in equation (2)
    $$x+2y=4$$
    $$x+2(-3-x)=4$$
    $$x-6-2x=4$$
    $$-x=4+6$$
    $$x=-10$$
    Substitute the value of $$x$$ in equation (1)
    $$x+y=-3$$
    $$-10+y=-3$$
    $$y=-3+10$$
    $$y=7$$
    Therefore solution is $$x=-10$$ and $$y=7$$
  • Question 9
    1 / -0
    Solve the equations using graphical method: $$x + y = 7$$ and $$2x - 3y = 9$$
    Solution

    For line $$2x-3y=9$$
     $$x$$ $$0$$ $$6$$
     $$y$$ $$-3$$ $$1$$
    For line $$x+y=7$$
     $$x$$ $$5$$ $$2$$
     $$y$$ $$6$$ $$1$$
    $$x + y = 7$$ ----- (1)
    $$2x - 3y = 9$$ ----- (2)
    From equation (1)
    $$y = 7 - x$$  ------ (3)
    Assume the value of $$x = 5, $$6 and put those values in equation (3)
    If $$x = 5, y = 7-5 = 2$$
    If $$x = 6, y = 7 - 6 = 1$$

    Now plotting (5, 2), (6, 1) and joining them, we get a straight line.
    From equation (2),
    $$2x - 3y = 9$$
    $$y = \dfrac{2x-9}{3}$$ ------ (4)
    Assume the value of $$x = 0, 6$$ and put those values in equation (4)
    If $$x = 0, y =\dfrac{2x-9}{3} = \dfrac{2(0)-9}{3}=\dfrac{-9}{3} = - 3$$
    If $$x = 6, y =\dfrac{2(6)-9}{3} = \dfrac{12-9}{3}=\dfrac{3}{3} =1$$

    Plotting $$(0, -3), (6, 1)$$ and joining them, we get another straight line.
    These lines intersect at the point $$(6, 1)$$ and therefore the solution of the equation is $$x = 6, y = 1$$ .

  • Question 10
    1 / -0
    Solve the equation using substitution method:
    $$4x-6y=-4$$  and  $$8x-2y=48$$
    Solution
    $$4x-6y=-4$$  ------- (1)  
    $$8x-2y=48$$  --------(2)
    From equation (1)
    $$4x-6y=-4$$
    $$4x+4=6y$$
    $$y=\cfrac{4x+4}{6}$$
    Substitute the value of $$y$$ in equation (2)
    $$8x-2(\cfrac{4x+4}{6})=48$$
    $$42x-4x4=144$$
    $$20x=144+4$$
    $$x=7.4$$ 
    The substitute the value of $$x$$ in equation (1)
    $$4(7.4)-6y=-4$$
    $$29.6-6y=-4$$
    $$29.6+4=6y$$
    $$\cfrac{33.6}{6}=y$$
    $$y=5.6$$
    Therefore solution is $$x= 7.4$$ and $$y=5.6$$  
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now