Self Studies

Pair of Linear Equations in Two Variables Test - 59

Result Self Studies

Pair of Linear Equations in Two Variables Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve each pair of equation by using the substitution method.
    $$0.2x+0.3{y}=1.3$$
    $$0.4x+0.5{y}=2.3$$
    Solution
    $$0.2x+0.3y=1.3.......(i)$$
    $$0.4x+0.5y=2.3......(ii)$$
    From equation $$(i)$$, we get
    $$0.2x=1.3-0.3y$$
    $$\Rightarrow \ x=\dfrac {13-3y}{2}.....(iii)$$
    From equation $$(iii)$$ and equation $$(ii)$$
    $$\therefore \ 0.4\left(\dfrac {13-3y}{2}\right)+0.5y=2.3$$
    $$\Rightarrow \ 2.6-0.6y+0.5y=2.3$$
    $$\Rightarrow \ -0.1y=-0.3\\\ \Rightarrow y=3$$
    $$\therefore x=\dfrac {13-3\times 3}{2}\\\ \ \ \ \ \ =2$$
  • Question 2
    1 / -0
    Solve each pair of equation by using the substitution method.
    $$2x+3y=9$$
    $$3x+4y=5$$
    Solution
    $$2x+3y=9---(i)$$
    $$3x+4y=5--(ii)$$
    From equation $$(i)$$, we get
    $$\Rightarrow \ 2x=9-3y\ \Rightarrow x=\dfrac {9-3y}{2}---(iii)$$
    Substituting equation $$(iii)$$ in equartion $$(ii)$$, we get
    $$\Rightarrow \ 3\left(\dfrac {9-3y}{2}\right)+4y=5$$
    $$\Rightarrow \ 27-9y+8y=10$$
    $$\Rightarrow \ y=27-10=17$$
    $$\therefore \ x=\dfrac {9-3\times 17}{2}=\dfrac {-42}{2}=-21$$
  • Question 3
    1 / -0
    Classes A and B have $$35$$ students each. If seven girls shift from class $$A$$ to class $$B$$, then the number of girls in the classes would interchange. If four girls shift from class $$B$$ to class $$A$$, then the number of girls in class $$A$$ would be twice the original number of girls in class $$B$$. What is the number of boys in Class $$A$$ and in Class $$B$$?
    Solution

    $$\textbf{Step -1: Form the required equations.}$$

                      $$\text{Let the number of girls in class }A\text{ be }x.$$

                      $$\text{Let the number of girls in class }B\text{ be }y.$$

                      $$\text{Let the number of boys in class }A\text{ be }35-x.$$

                      $$\text{Let the number of boys in class }B\text{ be }35-y.$$

                      $$\text{If seven girls are shifted from class }A\text{ to }B,$$

                      $$\text{Number of girls in class }A\text{ would become }x-7.$$

                      $$\text{Number of girls in class }B\text{ would become }y+7.$$

                      $$\text{But according to the question,}$$

                      $$y=x-7$$

                      $$\Rightarrow x-y=7\ldots(i)$$

                      $$\text{If four girls are shifted from class }B\text{ to }A,$$

                      $$\text{Number of girls in class }A\text{ would become }x+4.$$

                      $$\text{Number of girls in class }B\text{ would become }y-4.$$

                      $$\text{But according to the question,}$$

                      $$x+4=2y$$

                      $$\Rightarrow x-2y=-4\ldots(ii)$$

    $$\textbf{Step -2: Solve the above formed two equations simultaneously.}$$

                      $$\text{On subtracting equation }(ii)\text{ from }(i),\text{ we get}$$

                      $$-y+2y=7+4$$

                      $$\Rightarrow y=11$$

                      $$\text{On putting the value of }y\text{ in equation }(i),\text{ we get}$$

                      $$x-11=7$$

                      $$\Rightarrow x=18$$

    $$\textbf{Step -3: Find the number of boys in class A and B.}$$

                      $$\text{Number of boys in class }A=35-18$$

                      $$=17$$

                      $$\text{Number of boys in class }B=35-11$$

                      $$=24$$

    $$\textbf{Therefore, option D is correct.}$$

  • Question 4
    1 / -0
    A number is $$\dfrac{2}5{}$$ times another number. If their sum is $$70$$, Find the numbers.
    Solution
    Let the numbers be $$x$$ and $$ y$$
    According to the question
    $$x=\dfrac{2}{5}y............(i)$$
    $$x+y=70...............(ii)$$
    $$\dfrac{2}{5}y+y=70$$
    $$\dfrac{2y+5y}{5}=70$$
    $$7y=350$$
    $$y=50$$
    $$x+50=70$$
    $$x=20$$
    So the numbers are $$20$$ and $$50$$
  • Question 5
    1 / -0
    Solve the following pairs of linear equations by elimination method
    $$3x+4y=25$$
    $$5x-6y=-9$$
    Solution
    $$3x+4y=25\_\_\_\_\_\_(i)\times 3$$
    $$5x-6y=-9\_\_\_\_\_\_(ii)\times 2$$

    $$9x+12y=75$$
    $$10x-12y=-18$$
    (+)$$\quad$$(+)$$\quad\quad\quad$$(+)
    $$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_$$
    $$19x\quad=57$$
    $$\Rightarrow x=3$$
    $$\Rightarrow 3 \times 3+4y=25$$
    $$\Rightarrow 4y=16\Rightarrow y=4$$
  • Question 6
    1 / -0
    Sum of two numbers is $$407$$. The sum and difference of their LCM and HCF are $$925$$ and $$851$$ respectively. The difference of two numbers is
    Solution
    Let the two numbers: be $$x$$ & $$y$$
    $$\therefore x+y=407$$ ......... $$(1)$$

    Acc to the question,
    $$LCM+HCF=925$$ .......... $$(2)$$
    $$LCM-HCF=851$$ ......... $$(3)$$

    On subtracting $$(2)$$ & $$(3)$$
    $$LCM+HCF=925\\ -LCM+HCF=-851\\ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \\ \quad \quad \quad  \ \ \ \ \ 2HCF=74\\ \quad \quad \quad  \ \ \ \ \ \ \ HCF=37$$

    $$\therefore LCM -(37)=857$$
    $$LCM=857+37$$
    $$=888$$

    As we know, $$LCM\times HCF=$$ product of two numbers
    $$\therefore 888\times 37=x xy$$ ............. $$(4)$$

    From $$(1)$$,
    $$x=(407-y)$$
    $$\therefore 888\times 37 = (407-y)y$$
    $$\Rightarrow y^{2}-407y+832856$$
    $$(y-111)(y-296)$$
    $$\therefore x=296$$ and $$y=111$$
    $$\therefore$$ Difference of two numbers $$=296-111$$
    $$=185$$
    $$\therefore $$ Option $$B$$ is correct.

  • Question 7
    1 / -0
    Solve the following pair of linear equations in two variables (by graph) :
    $$2x+3y=5,\ x+6y=25$$
  • Question 8
    1 / -0
    The liquids $$X$$ and $$Y$$ are mixed in the ratio of $$3:2$$ and the mixture is sold at $$Rs\;11$$ per liter at a profit of $$10\%$$. If the liquid $$X$$ costs $$Rs\;2$$ more per liter than $$Y$$, the cost of $$X$$ per liter is (in Rs.):
    Solution
    Let Cost of $$X$$ be $$x$$
          Cost of $$Y$$ be $$y$$
    and their volumes be $$3K$$ and $$2K$$
    Now, $$x=y+2$$
    Let original price be $$P$$
    So, $$P+10$$% of $$P=11$$
    $$P+0.1P=11$$
    $$1.1P=11$$
    $$P=10$$
    So, $$\dfrac { 3Kx+2Ky }{ 3K+2K } =\dfrac { 3x+2y }{ 5 } =10$$
    $$3x+2y=50$$....(1)
    and $$x=y+2$$....(2)
    Using (2) in (1), we get
    $$\Rightarrow 3y+6+2y=50\Rightarrow 5y=44\Rightarrow y=\dfrac { 44 }{ 5 } =8.8$$ Rs.
    $$x=10.8$$Rs.
  • Question 9
    1 / -0
    At a zoo, there were parrots and rabbits in the same enclouser. Sravanthi counted 30 heads and 100 legs altogether. how many animals of each type were in the enclouser
    Solution

  • Question 10
    1 / -0
    IF $$x - 2y = -1$$, $$y=-\dfrac { 1 }{ 2 } $$, then find the value of $$x$$ 
    Solution
    Given:
    $$x-2y=-1$$.....................[1]

    $$y=-\dfrac12$$..................[2]

    Putting $$y=-\dfrac12$$ in equation $$1$$:

    $$x-2\times -\dfrac12=-1$$

    $$\implies x+1=-1$$

    $$\implies x=-2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now