Self Studies

Quadratic Equations Test - 22

Result Self Studies

Quadratic Equations Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The discrimination of $$ax^{2} - (a + b)x + b = 0$$ is
    Solution
    $$ D = (b^{1})^{2}-4a^{1}c^{1} $$
    $$ = (a+b)^{2}-4\times (a)\times (b) $$
    $$ = a^{2}+b^{2}+2ab-4ab = a^{2}+b^{2}-2ab $$
    $$ \Rightarrow \boxed{D = (a-b)^{2}} $$ 

  • Question 2
    1 / -0
    Which of the following is a quadratic equation?
    Solution
    i) As highest Power is '1' $$ \therefore $$ not quadratic 
    ii) $$ (x-1)(x+4) = x^{2}+1\Rightarrow x^{2}+3x-4 = x^{2}+1\Rightarrow \boxed{3x-5 = 0} $$
    $$ \therefore $$ not quadratic (higher degree 1)
    iii) Highest delrle is '2' $$ \therefore $$ quadratic  
    iv) $$ (2x+1)(3x-4) = 6x^{2}+3\Rightarrow  6x^{2}-5x-4 = 6x^{2}+3 $$
    $$ \Rightarrow 5x+7 = 0 $$ ($$ \therefore $$ not quadratic) 
  • Question 3
    1 / -0
    If $$x^{2} + 10 x = 24,$$ where $$x>0$$, then the value of $$x + 5$$ is
    Solution

    $$x^2+10x-24 = 0$$

    $$x^2+12x-2x-24=0$$

    On factoring we get,

    $$(x – 2)(x + 12) = 0$$

    $$x = 2, x = -12$$

    Condition: $$x > 0$$, then the value of $$x + 5$$ is $$2 + 5 = 7$$.

  • Question 4
    1 / -0
    The roots of the quadratic equations 
    $$(x-1)^2 = \frac{9}{4}$$, are
    Solution
    Given, $$(x-1)^2=\dfrac{9}{4}=\left(\dfrac{3}{2}\right)^2$$
    $$\Rightarrow x-1=\pm \dfrac{3}{2}$$
    $$\Rightarrow x=\pm \dfrac{3}{2}+1$$
    $$\Rightarrow x=-\dfrac{1}{2}, \dfrac{5}{2}$$
  • Question 5
    1 / -0
    Solve the given equation by the method of Completion of Squares: $${x}^{2}+4x+4=0$$?
    Solution
    Given that: 
    $$p(x)=x^2+4x+4=0$$

    Solution:
    Zeroes of the polynomial $$p(x)=x^2+4x+4=0$$

    $$\Rightarrow x^2 + 2 \times 2 \times x + (2)^2 = (x + 2)^2$$

    or, $$(x+2)(x+2)=0$$

    or, $$x=-2$$ or  $$x=-2$$

    Therefore, the correct answer is $$-2$$
  • Question 6
    1 / -0
    The discriminant ($$D$$) of the equation $$5x-6+\cfrac { 1 }{ x } =0$$ is ............
    Solution
    Given: $$5x-6+\cfrac { 1 }{ x } =0$$

    $$\Rightarrow 5{ x }^{ 2 }-6x+1=0$$

    Comparing above equation with standard quadratic equation $$ax^2+bx+c=0$$, we get $$a=5,b=-6,c=1$$

    Now, Discriminant $$(D) ={ b }^{ 2 }-4ac$$

                                           $$=36-20$$

                                           $$=16$$
  • Question 7
    1 / -0
    The roots of quadratic equation $$\dfrac{x}{k} = \dfrac{k}{x} $$ are ...........
    Solution
    Given: $$\dfrac{x}{k} = \dfrac{k}{x}$$

    $$\Rightarrow x^2 = k^2$$

    $$\Rightarrow x = \sqrt{k^2}$$

    $$\Rightarrow x = \pm k$$

    $$\Rightarrow x = k, -k$$

    Hence, the roots are $$k,-k$$
  • Question 8
    1 / -0
    The discriminant of $$x^2 - 3x + k = 0$$ is $$1$$ then the value of $$k = .............$$
    Solution
    Comparing the equation $$x^2 - 3x + k = 0$$ with $$ax^2 + bx + c = 0$$, we get $$a = 1, b = - 3, c = k$$

    Here, discriminant $$= 1$$

    $$\therefore b^2 - 4ac = 1$$ ...... $$[\because D=b^2 - 4ac]$$

    $$\therefore (-3)^2 - 4(1)(k) = 1$$

    $$\therefore 9 - 4k = 1$$

    $$\therefore -4k = - 8$$

    $$\therefore k = 2$$
  • Question 9
    1 / -0
    __________ is true for the discriminant of a quadratic equation $$x^2+x+1=0$$.
    Solution
    For $$x^2+x+1=0$$
    $$a=b=c=1$$                   { by comparing with the general equation $$ax^2+bx+c$$ }
    $$D=b^{2}-4ac$$
    $$D=1^{2}-4\times 1\times 1$$
    $$D=1-4=-3$$
    Therefore D is negative
  • Question 10
    1 / -0
    The value of the product $$\left (3 + \dfrac {5}{x}\right )$$ and $$\left (9 - \dfrac {15}{x} + \dfrac {25}{x^{2}}\right )$$ at $$x = 1$$ is _______.
    Solution
    The value of product $$(3+\dfrac{5}{x})$$ and $$\left (9-\dfrac{15}{x}+\dfrac{25}{x^2}\right)$$ at $$x=1$$ be $$f$$
    $$\left (3+\dfrac{5}{x}\right)$$ at $$x=1$$ is equal to $$3+\dfrac{5}{1}=3+5=8$$
    $$\left (9-\dfrac{15}{x}+\dfrac{25}{x^2}\right)$$ at $$x=1$$ is equal to $$9-\dfrac{15}{1}+\dfrac{25}{1}=9-15+25=19$$
    $$y=8\times 19=152$$ at $$x=1$$
    Therefore, required product is $$152$$.

    Option (C) is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now