Self Studies

Quadratic Equations Test - 28

Result Self Studies

Quadratic Equations Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of discriminant for the following equation.
    $$2x^{2}\, +\, x\, +\, 1\, =\, 0$$
    Solution
    The value of discriminant of $$2x^2 + x + 1 =0 $$ is
    $$D = b^2 - 4ac$$
    $$a=2, b=1, c=1$$
    $$\therefore D = (1)^2 - 4\times2\times1 $$
    $$= 1 - 8$$
    $$= -7$$
  • Question 2
    1 / -0
    Find $$m$$, if the quadratic equation $$(m\, -\, 1)\, x^{2}\, -\, 2\, (m\, -\, 1)\, x\, +\, 1\, =\, 0$$ has real equal roots.
    Solution
    For the quadratic equation, $$(m\, -\, 1)\, x^{2}\, -\, 2\, (m\, -\, 1)\, x\, +\, 1\, =\, 0$$ 
    Discriminant = $${(-2(m-1))}^2 - 4\times(m-1)= 0$$...... Since roots are real equal roots
    $$4m^2 -8m + 4 - 4m + 4 = 0$$
    $$4m^2 - 12m + 8 =0 $$
    $$m^2 - 3m + 2 = 0$$
    $$\therefore m = 1, 2 $$
    Neglect $$m= 1$$ as the equation will not be quadratic anymore.
    Hence, $$m = 2$$
  • Question 3
    1 / -0
    Find c, if the quadratic equation $$x^{2}\, -\, 2\, (c\, +\, 1)\, x\, +\,  c^{2}\, =\, 0 $$ has real and equal roots. 
    Solution
    Since, the roots are real and equal, $$D = 0$$
    $$D=\sqrt {b^2-4ac=0}$$
    $$(-2(c+1))^2 - 4c^2 = 0$$
    $$4(c^2 + 2c + 1) - 4c^2 = 0 $$
    $$8c + 4 = 0 $$
    $$\therefore c = \displaystyle \frac{-1}{2}$$
  • Question 4
    1 / -0
    Find the value of discriminant for the following equation.
    $$4x^{2}\, -\, kx\, +\, 2\, =\, 0$$
    Solution
    Given equation is:
    $$4 x^2-kx+2=0$$
    Discriminant = $$b^2 - 4ac$$ 
    $$a=4, b=-k, c=2$$
    $$\therefore D= (k)^2 - 4(2)(4)$$
    $$= k^2 - 32$$
    $$\therefore \Delta= k^2-32$$
  • Question 5
    1 / -0
    Solve the equation using formula.
    $$2x^{2}\, +\, \displaystyle \frac{x\, -\, 1}{5}\, =\, 0$$
    Solution
    Given equation is $$2x^{2}\, +\, \displaystyle \frac{x\, -\, 1}{5}\, =\, 0$$
    $$\therefore 10x^2 + x - 1 = 0$$
    Applying qudratic formula,
    $$x = \displaystyle \frac{-b \pm \sqrt{b^2-4ac}}{2a}$$
    $$a=10, b=1, c=-1$$

    $$\therefore  x =\displaystyle  \frac{-1 \pm \sqrt{1 + 40}}{20}$$

    $$\therefore x =\displaystyle \frac{ -1 \pm \sqrt{41}}{20}$$
    $$\therefore$$ roots of the given equation are $$\displaystyle \frac {-1 \pm \sqrt {41}}{20}$$
  • Question 6
    1 / -0
    Which constant should be added and subtracted to solve the quadratic equation $$4{ x }^{ 2 }-\sqrt { 3 } x-5=0$$ by the method of completing the square?
    Solution
    We have,
    $$4{ x }^{ 2 } - \sqrt { 3 } x - 5 = 0$$
    Divide whole equation by $$4$$,
    $$\therefore   { x }^{ 2 } - \displaystyle\frac { \sqrt { 3 }  }{ 4 } x - \displaystyle\frac { 5 }{ 4 } = 0$$
    $$\therefore { \left( x -\displaystyle\frac { \sqrt { 3 }  }{ 8 }  \right)  }^{ 2 } - \displaystyle\frac { 5 }{ 4 } = \displaystyle\frac { 3 }{ 64 }$$
    $$\Rightarrow 4{ \left( x -\displaystyle\frac { \sqrt { 3 }  }{ 8 }  \right)  }^{ 2 } - 5 - \displaystyle\frac { 3 }{ 16 } = 0$$
    $$\therefore \displaystyle \frac { 3 }{ 16 }$$ must be added to make $$4{ x }^{ 2 } - \sqrt { 3 } x - 5 = 0$$ a complete square
  • Question 7
    1 / -0
    The value of $$p$$ for which the equation $$x^2+4=(P+2)x $$ has equal roots?
    Solution
    Given Equation is:
    $$x^{2}+4=(P+2)x\Rightarrow x^{2}-(P+2)x+4=0\Rightarrow a=1, b=-(P+2),C=4$$
    Since given equation has equal roots
    Therefore $$b^{2}-4ac=0\Rightarrow [-P+2]^{2}-4(4)=0$$
    $$P+2=\pm 4\Rightarrow P=2,-6$$
  • Question 8
    1 / -0
    The ratio of the roots of the equation $$a{ x }^{ 2 }+bx+c=0$$ is same as the ratio of the roots of the equation $$p{ x }^{ 2 }+qx+r=0$$. If $${ D }_{ 1 }$$ and $${ D }_{ 2 }$$ are the discriminants of $$a{ x }^{ 2 }+bx+c=0$$ and $$p{ x }^{ 2 }+qx+r=0$$ respectively, then $${ D }_{ 1 }:{ D }_{ 2 }$$ is equal to
    Solution
    Let $$\displaystyle { \alpha  }_{ 1 },{ \beta  }_{ 1 }$$ be the roots of $$a{ x }^{ 2 }+bx+c=0$$ and $${ \alpha  }_{ 2 },{ \beta  }_{ 2 }$$ be the roots of $$p{ x }^{ 2 }+qx+r=0$$. Then

    $$\displaystyle \frac { { \alpha  }_{ 1 } }{ { \beta  }_{ 1 } } =\frac { { \alpha  }_{ 2 } }{ { \beta  }_{ 2 } } $$   (given)

    $$\displaystyle \frac { { \alpha  }_{ 1 }+{ \beta  }_{ 1 } }{ { \alpha  }_{ 1 }-{ \beta  }_{ 1 } } =\frac { { \alpha  }_{ 2 }+{ \beta  }_{ 2 } }{ { \alpha  }_{ 2 }-{ \beta  }_{ 2 } } $$   (Applying componendo and dividendo)

    $$\displaystyle \frac { { \left( { \alpha  }_{ 1 }+{ \beta  }_{ 1 } \right)  }^{ 2 } }{ { \left( { \alpha  }_{ 1 }-{ \beta  }_{ 1 } \right)  }^{ 2 } } =\frac { { \left( { \alpha  }_{ 2 }+{ \beta  }_{ 2 } \right)  }^{ 2 } }{ { \left( { \alpha  }_{ 2 }-{ \beta  }_{ 2 } \right)  }^{ 2 } } $$

    $$\displaystyle\frac { { \left( { \alpha  }_{ 1 }+{ \beta  }_{ 1 } \right)  }^{ 2 } }{ { \left( { \alpha  }_{ 1 }+{ \beta  }_{ 1 } \right)  }^{ 2 }-4{ \alpha  }_{ 1 }{ \beta  }_{ 1 } } =\frac { { \left( { \alpha  }_{ 2 }+{ \beta  }_{ 2 } \right)  }^{ 2 } }{ { \left( { \alpha  }_{ 2 }+{ \beta  }_{ 2 } \right)  }^{ 2 }-4{ \alpha  }_{ 2 }{ \beta  }_{ 2 } } $$

    $$\displaystyle \dfrac { \dfrac { { b }^{ 2 } }{ { a }^{ 2 } }  }{ \dfrac { { b }^{ 2 }-4ac }{ { a }^{ 2 } }  } =\dfrac { \dfrac { { q }^{ 2 } }{ { p }^{ 2 } }  }{ \dfrac { { q }^{ 2 }-4rp }{ { p }^{ 2 } }  } $$
    $$\Rightarrow \dfrac { { b }^{ 2 } }{ { D }_{ 1 } } =\dfrac { { q }^{ 2 } }{ { D }_{ 2 } }$$
    $$ \Rightarrow \dfrac { { D }_{ 1 } }{ { D }_{ 2 } } =\dfrac { { b }^{ 2 } }{ { q }^{ 2 } } $$
  • Question 9
    1 / -0
    The given equation $$\displaystyle (x + 1)^2 = 2 (x - 3)$$ is
    Solution
    $$(x+1)^{2}=2(x-3)$$
    Hence
    $$x^{2}+2x+1=2x-6$$
    $$x^{2}+7=0$$
    $$x^{2}+(0)x+7=0$$
    Hence it is a quadratic equation.
  • Question 10
    1 / -0
    Check whether the following is a quadratic equation.
    $$\displaystyle (x - 2) (x + 1) = (x - 1) (x + 3)$$
    Solution
    Given, $$(x-2)(x+1)=(x-1)(x+3)$$
    $$\Rightarrow x\left( x+1 \right) -2(x+1)=x\left( x+3 \right) -1\left( x+3 \right) $$
    $$\Rightarrow { x }^{ 2 }+x-2x-2={ x }^{ 2 }+3x-x-3$$
    $$\Rightarrow 2x-2x-2-3x+3=0$$
    $$\Rightarrow -3x+1=0$$
    $$\Rightarrow -3x=-1$$
    Hence, $$x=\dfrac{1}{3}$$
    A quadratic equation is of the form $$ax^2+bx+c=0$$
    Thus the above equation is not a quadratic equation.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now